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1 Introduction 

Sunshine Duration (SD) is a key climate variable that has been measured reliably at weather 
stations since the 1800s.  The first official measurement of SD in the Met Office station 
database for the UK is currently recorded on 1 July 1887 (station source identification number 
808, Eastbourne) although there may be undigitised data that exist prior to this date.  Since 
then, the UK station network that provides SD observations has changed considerably over 
time, reaching a peak of ~400 stations in the 1970s.  However, the number of SD sensors has 
declined since the 1970s and the UK currently has only ~100 stations that measure SD (Figure 
1-1).  These data are used as input into the Met Office ‘HadUK-Grid’ SD dataset, produced by 
the National Climate Information Centre (NCIC), which provides gridded SD data for the UK 
since 1910 (Met Office, 2018; Perry & Hollis, 2005).   

 

Figure 1-1:  Map and time series showing the location and total number of unique stations used in this 
study between 1 January 1983 and 31 December 2022.  The UK station network with SD-observing 
capability includes ‘non-standard’ stations that are excluded from this study and are therefore not shown 
in this figure.  Only stations with at least 365 valid daily observations are included; further details on the 
data quality control and screening are presented in Section 2.1.  The left-hand map shows all the stations 
that report SD between 1983 and 2022, where the colour indicates the last reporting year (colour bar on 
the left-hand side of this map).  

Due to the increasing sparsity of the station network, uncertainties in the HadUK-Grid SD 
dataset are increasing.  This is a problem shared by many other National Meteorological 
Services (NMS) whose SD-observing station networks are also in decline.  Consequently, a 
number of studies have developed satellite-based estimates of SD, which can provide 
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spatially-complete fields.  For example, Kandirmaz (2006) proposed a simple model that 
estimated SD from a daily mean cloud cover index derived from geostationary satellite data, 
which was tested on data from the Meteosat First Generation (MFG).  Good (2010) used 15-
minute cloud-type observations from Meteosat Second Generation (MSG) to estimate daily SD 
for the UK, which was then evaluated using the same station SD observations that are used 
as input into the HadUK-Grid SD dataset.  Wu et al. (2016) also used cloud classification from 
the geostationary FenYung-2D satellite to estimate SD over the Heihe River Basin in China.  
Kothe et al. (2013) extended the approach of Good (2010) to Europe, also using MFG data, 
and trialed the use of surface incoming direct (SID) radiation in place of cloud type data to 
improve the satellite SD estimates.  Later, Kothe et al. (2017) modified the SID approach 
further to develop the first operational satellite-based SD product for the Satellite Application 
Facility for Climate Monitoring (CM SAF).   

Several studies have also tried to create blended SD datasets, which are based on a 
combination of satellite and station-based observations, in the hope that these datasets may 
provide better SD estimates and with lower uncertainty compared with using sparse station SD 
alone.  For example, Frei et al. (2015) used principal component analysis and kriging with 
external drift to apply spatial patterns in SD derived from satellite data to interpolate station SD 
observations to produce improve estimates of SD over Switzerland.  Journée et al. (2013) also 
used kriging with external drift to derive a blended satellite-station SD dataset for Belgium and 
Luxembourg, which they found out-performed linear regression and ordinary kriging.  Bertrand 
et al. (2013) also estimated SD for Belgium using a combination of an MSG-based clearness 
index together with station SD observations.   

The objective of this study is to develop a blended satellite-station dataset for the UK.  The 
study uses the CM SAF SD dataset produced by Kothe et al. (2017), which is available since 
1983, and in situ station observations from the UK that are maintained by the Met Office 
between 1983 and 2022; Figure 1-1 shows the location and number of Met Office weather 
stations used in the study.  The aim is to produce blended SD data at both monthly and daily 
temporal resolution, which can be made available to users alongside the monthly, seasonal 
and annual HadUK-Grid SD dataset.  A significant component of the study is an assessment 
of the station SD data and how well these data agree with the satellite SD estimates.  In 
particular, the station observations from the two different sensor types that are used in the UK 
are intercompared to determine which sensor agrees more closely with the satellite SD.  The 
conversion used by the Met Office to unify the two different types of station observations is 
also evaluated.  The study is presented as follows: Section 2 describes the datasets used in 
the study.  Section 3 presents the methods used to intercompared the different datasets and 
to produce the blended SD estimates.  Section 4 presents the results of the intercomparisons 
and the blended SD dataset, including the justification for the choice of the final station SD 
dataset that is used as input.  Section 5 provides the conclusions of the study and looks ahead 
to the next steps needed in order to provide these new datasets operationally in near-real time. 
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2 Data  

Details of the different SD datasets used in this study are provided in the following sub-
sections.  A summary of these datasets is presented in Table 2-1. 

Table 2-1:  Summary of the SD datasets used in this study.  

Dataset 
acronym Description Reference/source 

SD Generic term to describe sunshine duration. N/A 

SDstn 
SD dataset based on ‘point’ in situ 
observation(s) from weather stations.   

MIDAS Open (Met Office, 
2023) 

SDcs 

SD dataset based on ‘point’ in situ 
observation(s) recorded only by Campbell 
Stokes (CS) sensor(s); no corrections or 
adjustments applied. 

MIDAS Open (Met Office, 
2023) 

SDkz 

SD dataset based on ‘point’ in situ 
observation(s) recorded only by Kipp & 
Zonen (KZ) sensor(s); no corrections or 
adjustments applied. 

MIDAS Open (Met Office, 
2023).  Also see 
https://www.kippzonen.com/. 

SDcs_con 
SD dataset derived from SDcs converted to 
the equivalent KZ values only, i.e. no SDkz. 

Legg (2014) 

SDkz_con 
SD dataset derived from SDkz converted to 
the equivalent CS values, i.e. no SDcs 

Legg (2014) 

SDcs_uni 
SD dataset comprising both SDcs and 
SDkz_con only, i.e. no SDkz. 

 

SDkz_uni 
SD dataset comprising both SDkz and 
SDcs_con only, i.e. no SDcs. 

 

SDsat 

A daily 0.05°x0.05° SD dataset for Europe, 
Africa and parts of S. America based on 
satellite observation(s) produced by the CM 
SAF. 

Kothe et al. (2017) 

SDhad 
A monthly 5x5 km gridded SD dataset for the 
UK derived from SDcs_uni produced by the 
Met Office Hadley Centre. 

Perry & Hollis, 2005 

SDbld 
A daily and monthly 0.05°x0.05° SD dataset 
for the UK produced by blending SDcs_uni and 
SDsat observation(s). 

Derived in this study. 
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2.1 Station SD (SDstn) 

The in situ station data used in this study have been sourced from the MIDAS (Met Office 
Integrated Data Archive System) Open database, which is a subset of the full MIDAS record.  
This study uses MIDAS Open version 202308.  MIDAS Open contains only UK mainland land 
surface observations from weather stations owned and operated by the Met Office. The data 
set contains approximately 95% of the available weather observations (Met Office, 2019). The 
UK daily weather observations, including SD recorded at stations (SDstn), are recorded on a 
24 hour time scale and utilise data transmitted within the DLY32081, NCM2, AWSDLY3, and 
SYNOP4 messages (Met Office, 2023).  These observational sources are recorded as the met 
domain in the MIDAS Open database. 

Most UK weather stations available in MIDAS Open are used in this analysis; only a few non-
standard stations are excluded based on information supplied by the NCIC (NCIC, Personal 
Communication). These stations either may never be suitable for use or can become available 
for certain periods of time. For any period that a station is listed as non-standard, it is excluded 
from this study. 

The SDstn in MIDAS Open is recorded in hours per day, and each measurement has a 5-digit 
code (note: leading zeros may be excluded) conveying the quality control (QC) applied to each 
measurement.  The QC is implemented in this study following recommended practise (MIDAS 
Open documentation, https://help.ceda.ac.uk/article/4982-midas-open-user-guide; NCIC 
Personal Communication), where any measurement with a status flag equal to 1 is excluded 
from the data set as this corresponds to the data being “observed and suspect (i.e. has failed the 
latest QC check), or there are strong grounds for suspecting the accuracy of the observation”.  The 
status flag is the third number in the 5-digit code. 

In addition to the screening process described above, SDstn observations that do not have a 
time stamp of 23:59 are excluded; 23:59 is the standard observing time for SDstn but there are 
a few SDstn data that are recorded in MIDAS Open with other times, e.g. 09:00, which is the 
standard observation time for precipitation, for example.  The post-processing also includes a 
check for SDstn ≥ the day length for each space-time location to ensure no unfeasible SDstn 
values are included in the final station dataset.  Finally, any stations with fewer than 365 daily 
SDstn values are also excluded to minimise discontinuities in the time series and to ensure 
there are sufficient data for the additional QC that is applied in this study (see Section 4.3).  
This minimum number of observations threshold removes 88 stations from the dataset, 
although only 24 of these removed stations have more than 10 valid measurements. 

                                                

1 https://catalogue.ceda.ac.uk/uuid/2fd32ff2da0e4e718fdc23a9b90f791e 

2 https://catalogue.ceda.ac.uk/uuid/dd95b182eead4247a14c5911133e9030 

3 https://catalogue.ceda.ac.uk/uuid/778fc4752688475c8674f555d63bcf14 

4 https://catalogue.ceda.ac.uk/uuid/0cc854e249bf40bb8d47ac7c6f55d682 

https://help.ceda.ac.uk/article/4982-midas-open-user-guide
https://catalogue.ceda.ac.uk/uuid/dd95b182eead4247a14c5911133e9030
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Where there is more than one SDstn recording from different met domains on a single day the 
Met Office Data Components Business Rules are applied.  These rules are detailed in an 
internal Met Office document (Data Components Business Rules v3, May 2007) and assign a 
priority to each met domain, advising the user to select the met domain with the highest ranking 
(ranking = 1).  For SDstn, the ranking is: DLY3028=1, NCM=1, AWSDLY=2, SYNOP=3.  In the 
case where both DLY3028 and NCM messages are reported, the prime_capability_flag within 
MIDAS Open is used to determine which message should be used for this date.  Where this 
decision cannot be resolved, the DLY3028 message is used by default; in practise, this only 
occurs for one station on two days (station ID 56230 in the Western Isles in the Outer Hebrides 
on 30 and 31 October 2007).  

The MIDAS Open data set distinguishes between measurements of SDstn made by Campbell-
Stokes (CS) and Kipp & Zonen (KZ) devices.  CS is a traditional instrument that consists of a 
glass ball that burns a trace on a card, while KZ is a more modern sensor that uses photo-
diodes to determine when insolation exceeds 120 Wm-2, which is the World Meteorological 
Organization (WMO) definition of bright sunshine (WMO, 2015).  CS instruments are known to 
suffer from overburn, where the card continues to burn for a short time after a period of bright 
sunshine and has therefore been found to overestimate SD in the UK by up to 7% in winter 
and 20% in summer (Kerr & Tabony, 2004).  Both sets of observations are used in this study, 
which enables a comparison when stations have measurements from both devices.  
Additionally, a station time-series can be extended, or infilled when data are missing, by 
converting between the two measurements. A conversion from KZ to CS was proposed by 
Legg (2014) where a quadratic fit was applied to the daily fraction of sunshine for the CS vs 
KZ relationship.  In this study, this conversion is applied both ways, where the conversion from 
CS to KZ requires the inverse of this quadratic equation to be solved. Only one of the solutions 
returns sensible daily fractions of sunshine, where most values are between 0 and 1, and this 
is therefore the chosen solution.  Due to the original quadratic solution proposed by Legg 
(2014) not passing directly through the origin, a very small CS measurement can result in a 
negative solution for the estimated KZ sunshine fraction.  Where this occurs, the KZ daily 
sunshine fraction is set to zero.  Additionally, the solution allows for the KZ sunshine fraction 
to go slightly above 1, but this only occurs when a CS device records a daily sunshine fraction 
> ~0.9 – an impossible scenario for the UK.  The maximum possible SD that can be observed 
in the UK is ~19 hours, which is the number of hours of daylight on the day of the summer 
solstice at the UK’s most northern point, Out Stack, Shetland at 60°51′N 0°52′W 
(https://gml.noaa.gov/grad/solcalc/).  During winter, this maximum reduces to ~8 hours, which 
corresponds to the number of hours of daylight on the day of the winter solstice at the UK’s 
most southern point, Pednathise Head, Western Rocks, Isles of Scilly at 49°51′N 6°24′W.  The 
daily fractions of sunshine are translated into SDstn by considering the number of daylight hours 
for the space-time location of the measurement being converted.   

This process results in a quality-controlled time-series of SDstn (in hours) for each station. Some 
stations have two associated time-series if SDstn has been recorded using both CS and KZ 
devices.  This study considers both CS-native (SDcs) and KZ-native (SDkz) time series, i.e. 
where no conversions have been applied, and CS-unified (SDcs_uni) and KZ-unified (SDkz_uni) 
time series.  The unified time series are generated by applying the Legg (2014) conversion to 
produce 1) a single time series of CS data for all stations (SDcs_uni), where any KZ data are 
converted to CS (SDkz_con), and 2) a single time series of KZ data for all stations, where any 

https://gml.noaa.gov/grad/solcalc/


 

A blended in situ-satellite SDU 
dataset Report 

Doc. No: 
Issue: 
Date:  

SAF/CM/UKMO/CDOP4/REP/SD_UC 
1.0 

22.02.2024 

 

14 

CS data are converted to KZ (SDcs_con).  For SDcs_uni, SDcs data are always used where 
available and SDkz_con are only used to infill the time series where there are no SDcs 
observations.  Similarly, the SDkz_uni time series preferentially uses SDkz data.  This results in 
either two or four SDstn time series for each station used in this study, depending on whether 
a station has data from either CS or KZ sensors, or both CS and KZ sensors, respectively. 

2.2 HadUK-Grid SD (SDhad)  

The HadUK-Grid data set is a collection of climate variables which have been gridded through 
interpolation of UK station observations (Perry & Hollis, 2005).  The current suite of variables 
incudes air temperature (maximum, minimum and mean), precipitation, SD, mean sea level 
pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of 
ground frost.  The data are provided at daily, monthly, seasonal and annual temporal 
resolution, although not all variables are available on all timescales.  Data derived for specific 
climatological reference periods are also available. The HadUK-Grid extends to the present 
day from 1836, although the exact start date depends on the variable and the temporal 
resolution.  The gridded data are available for the UK at a range of spatial resolutions up to  
1 km x 1 km, although again, this also depends on the variable.  

The data set used here is sourced from the HadUK-Grid v1.2.0.0 (dated v20230328), which 
provides monthly SD at 5km x 5km resolution over UK land masses for the period 1910 to 
2022 (SDhad) (Met Office, 2018).  The SDhad data are not available at higher temporal and 
spatial resolutions owing to the sparsity of the SDstn network, which has declined over the past 
few decades and currently consists of around 100 stations (Figure 1-1).  The input SDstn 
observations comprise both SDcs and SDkz, although the SDkz are adjusted to align with 
observations from the CS instrument using the correction derived by Legg (2014).  The choice 
to use the CS instrument as a reference within SDhad is because CS observations comprise 
the majority of the historical UK SDstn record and are still the dominant sensor today.  To 
produce SDhad, the SDcs_uni data are gridded using a three-step process of normalisation, 
regression on geographic features, and interpolation of the regression residuals. The data are 
normalised by dividing by the long-term average, and then regressed on the easting, northing, 
and percentage of water within a 5km radius of the station. A cubed inverse distance weighting 
method is used to interpolate the residuals (Perry & Hollis, 2005).  The SDhad data are used as 
provided and no additional quality screening is applied in this study. 

2.3 CM SAF SARAH-3 SD (SDsat) 

The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) produces the 
Surface Solar Radiation Data Set – Heliosat; version three is used in this study (SARAH-3), 
which is the most recent version at the time of writing (Pfeifroth et al., 2023). The SD variable 
in the SARAH-3 data set (SDsat) is provided over both land and water.  SDsat is calculated from 
the number of 30-minute observations per day where the Direct Normalised Irradiance (DNI) 
is greater than or equal to 120 W/m2, which is the WMO definition of bright sunshine (WMO, 
2015): 
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Equation 2-1 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ×
∑ 𝑾𝑾𝑾𝑾#𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒊𝒊=𝟏𝟏
#𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

 

where #daylight slots represents the maximum number of 30-minute slots possible during 
daylight hours for that space-time location where the solar elevation angle exceeds 2.5°.  Wi 
is a weighting function between 0 and 1 that indicates the ‘sunniness’ of a single slot based on 
both the DNI of that grid box and the DNI of the 24 surrounding sunny/cloudy grid boxes from 
both the current and previous slot (Kothe et al., 2017).  This accounts for variation in SD that 
may occur during a single 30-minute slot due to moving, broken cloud.   

The SARAH-3 DNI estimates that underpin the SDsat are derived using data from the visible 
channels of the Meteosat Visible Infra-Red Imager (MVIRI) and Spinning Enhanced Visible 
Infra-Red Imager (SEVIRI) instruments onboard the geostationary Meteosat First and Second 
Generation (MFG & MSG) platforms (Pfeifroth et al., 2023).  Meteosat is the operational 
weather satellite for Europe and Africa, although parts of S. America are also captured towards 
the edge of the western field of view.  The SARAH-3 dataset extends from 1 January 1983 to 
the present day, although the data from 1 January 2021 are provided as an Interim Climate 
Data Record (ICDR), which are available within 5 days of acquisition.  Data are available for 
the region ±65° longitude and ±65° latitude at a spatial resolution of 0.05° x 0.05° latitude-
longitude.  The SDsat variable, termed SDU in the SARAH-3 dataset/documentation, is 
provided as both daily and monthly sums, although only the daily sums are utilised in this work 
(Pfeifroth et al., 2023). 

Kothe et al. (2017) reported good agreement between the CM SAF SD and in situ station 
observations, although they found that the SDsat tends to slightly overestimate SD compared 
to the station SD observations.  They obtained a mean daily satellite-station difference over 
Europe of 0.41 hours, a mean absolute difference (MAD) of 1.31 hours and a correlation (r) of 
0.91.  For monthly SDsat data over the Meteosat disc (Europe, Africa and S. America), they 
obtained a mean satellite-station difference of 7.5 hours, a MAD of 18.4 hours and an r value 
of 0.96.  Kothe et al. (2017) also reported that the largest-magnitude satellite-station 
differences were found in mountainous regions and on islands.   

The CM SAF SARAH-3 SD product provides an in-built quality flag, the record status. The 
record status flag is a single value applied to all grid-boxes on a given day i.e., a rejection of 
the data due to the flag results in losing the entire day. The record status can be one of three 
possible labels: “ok”, “void”, and “bad quality”. For this study, data are only retained if the flag 
is labelled as “ok” (a numerical value of 0 in the data set). The SDsat data are used as provided 
and no additional quality screening is applied in this study. 
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3 Methods 

The following sub-sections describe the study approach, which will ultimately result in the 
production and evaluation of a blended satellite-station SD dataset for the UK (SDbld).  The first 
step in developing SDbld is to characterise the relationship between the input SDsat and SDstn 
datasets, for example: 

• What are the differences between SDsat and SDstn and does this vary between SDcs and 
SDkz?   

• How well does the SDkz to SDcs correction (and vice-versa) perform?   
• Is there any spatial and/or temporal variation in the SDsat-SDstn differences?  
• Are there any non-climatic discontinuities in either the SDstn and/or SDsat?  
• What SDstn and/or SDsat data, if any, should be excluded from SDbld?  
• Where is SDbld likely to have larger errors that may result from the input SDstn and/or 

SDsat? 

This characterisation is achieved by comparing SDsat and the ‘point’ SDstn data directly; the 
approach used here is described in Section 3.1.1.  

The overall goal for this work is to enable production of both SDbld and SDsat for the UK that 
complement the existing HadUK-Grid monthly SD dataset (SDhad), which is based only on 
SDcs_uni. Therefore, a comparison between SDsat and SDhad is also performed to explore the 
differences and similarities between these datasets so that they can be communicated to 
users; this method is outlined in Section 3.1.2.  

For both sets of comparisons, a suite of standard statistical metrics is used, which are defined 
in Section 3.1.3. 

Finally, the methods used to create the SDbld data are described in Section 3.2.  However, it 
should be noted that both the approach and the results presented for this component of the 
study are preliminary and the SDbld dataset will be developed and refined further in future work. 

3.1 SD dataset intercomparison 

3.1.1 Comparison of SDsat and ‘point’ station SDstn  

This analysis is based on spatially and temporally colocated daily observations.  Each 
‘matchup’ pair consists of an SDstn observation and the corresponding 0.05°x0.05° SDsat grid 
cell observation that nominally contains the specified latitude and longitude of SDstn on the 
same date.  Separate comparison results are presented for SDsat vs SDcs and SDsat vs SDkz to 
establish whether the satellite data are more closely aligned with the CS or KZ SD 
observations.  As part of this analysis, temporally colocated SDcs and SDkz are compared for 
stations with both sensor types (an ‘overlap’ analysis).  The performance of the Legg (2014) 
KZ→CS SD correction is also assessed.  (It should be noted that the number of SD matchup 
pairs for the overlap analysis may be fewer than the minimum threshold of 365 valid daily 
observations required to include a given station in the study database (see Section 2.1).  No 
additional threshold screening is applied in the overlap analysis.)  In addition to characterising 
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the SDsat vs SDstn agreement, the primary objective for this analysis is to inform the choice of 
SDstn data that is used to generate SDbld. 

3.1.2 Comparison of SDsat and station SDhad  

This analysis is based on spatially and temporally colocated SDsat and SDhad observations.  To 
compare the monthly SDhad with daily SDsat requires equivalent monthly totals of SDsat, which 
are produced by summing the daily SDsat over all available days.  Following the approach of 
Kothe et al. (2013), a month is discarded if there are more than three missing days of data; in 
the event of one to three missing days, these are in-filled with the mean daily SDsat for that 
month.  

The HadUK-Grid SDhad is on a 5kmx5km grid while the CM SAF SDsat product on a 0.05°x0.05° 
grid. In order to make these data sets compatible for comparison, both are re-gridded on to a 
coarser 0.1°x0.1° grid. This is performed utilising the regrid function from the Iris Python 
package, which offers a number of geostatistical options.  The re-gridding method chosen for 
this study uses a linear interpolation5 where “points [are] calculated by extending the gradient 
of the closest two points”.  

3.1.3 Comparison statistics 

The agreement between the different datasets is quantified through the use of several standard 
statistical metrics.  The mean difference, 𝜇𝜇, (also frequently reported in the literature as ‘mean 
error’ or ‘bias’) is the arithmetic mean of the colocated satellite-minus-station/HadUK-Grid 
differences and is defined as: 

Equation 3-1 𝝁𝝁 = 𝟏𝟏
𝒏𝒏
∑ �𝑺𝑺𝑺𝑺𝑺𝑺𝒋𝒋 − 𝑺𝑺𝑺𝑺𝑺𝑺𝒋𝒋�𝒏𝒏
𝒋𝒋=𝟏𝟏   

Where n is the total number of matchups (i.e. SD pairs), and SD1 and SD2 are the colocated 
SDs (i.e. SDsat – SDstn).  The sample standard deviation, 𝜎𝜎 , (also frequently reported in 
literature as ‘precision’ or ‘bias-corrected root mean square error’) is a measure of the spread 
around the mean value of the distribution of differences.  It is defined as:  

Equation 3-2 𝝈𝝈 = � 𝟏𝟏
𝒏𝒏−𝟏𝟏

∑ (�𝑺𝑺𝑺𝑺𝑺𝑺𝒋𝒋 − 𝑺𝑺𝑺𝑺𝑺𝑺𝒋𝒋� − (𝝁𝝁)𝒏𝒏
𝒋𝒋=𝟏𝟏 )𝟐𝟐  

A deficiency of the standard deviation is that it assumes that the sample distribution is 
Gaussian, which is often not the case.  Therefore, the percentiles of the distribution of 
differences are also reported in this study.  The 50th percentile, i.e. the value above which (and 
below which) exactly 50% of the samples occur, is equivalent to the median difference. 

 

                                                

5 https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.Linear 
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3.2 Producing the SDbld dataset 

The approach used to produce a blended satellite-station SD data set in this study follows the 
work of Walawender (2017), who used regression-kriging to produce a 1 km blended satellite-
station SD dataset for Germany using the CM SAF SARAH-2 dataset.  This study uses a very 
similar approach but replaces the kriging component of the blending with a Gaussian Process 
(GP) model.  A GP model is chosen over kriging as it has the flexibility to include point-by-point 
variance, for example, a variation in the measurement uncertainty at each station.  While this 
is not currently implemented in the blending process, it is likely to be added in the next 
developmental phase of this work.  The Scikit-learn Python tool 
gaussian_process.GaussianProcessRegressor is used in this study (Pedregosa et al., 2011). 

The SDbld dataset developed here is based on the inputs SDsat and SDstn.  To blend these 
datasets, two distinct operations are performed.  First, a regression model is defined for the 
relationship between SDsat and SDstn.  In this preliminary analysis, three regression models are 
tested: 

Equation 3-3 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔𝟏𝟏 = 𝒄𝒄𝟏𝟏. 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 + 𝒅𝒅𝟏𝟏 + 𝜺𝜺𝟏𝟏 

Equation 3-4 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = 𝒃𝒃𝟐𝟐. 𝒍𝒍𝒍𝒍𝒍𝒍+ 𝒄𝒄𝟐𝟐 .𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 + 𝒅𝒅𝟐𝟐 + 𝜺𝜺𝟐𝟐 

Equation 3-5 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔𝟑𝟑 = 𝒂𝒂𝟑𝟑.𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔
𝟐𝟐 + 𝒃𝒃𝟑𝟑. 𝒍𝒍𝒍𝒍𝒍𝒍+ 𝒄𝒄𝟑𝟑 .𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔+ 𝒅𝒅𝟑𝟑 + 𝜺𝜺𝟑𝟑 

where a, b, c and d are the regression coefficients, lat is the latitude of the grid cell 
corresponding to SDsat, and ε is the error on the estimated SDstn.  The regression models are 
then applied to the SDsat dataset to predict SDstn for all grid cells with valid observations.  The 
model fit can include multiple additional variables as predictors (i.e. further variables on the 
right hand side of Equation 3-3 to Equation 3-5), such as latitude, elevation, and distance to 
coast.  However, in this initial work, only SDsat and latitude are included as predictors, but 
additional variables will be trialled in the next developmental phase of this study.  Additionally, 
the flexibility of the models is adapted by fitting a Generalised Linear Model (GLM) in which 
the error structure can be defined with a different distribution.  In this case, a Gamma error 
distribution with an identity link function is used to prevent the SD estimate uncertainty from 
going below zero.  In order for this model to be fitted successfully, data points where zero hours 
of SD were measured for both SDstn and SDsat were removed.  Future work will investigate 
alternative methods i.e. transformations, to help retain data.  Separate models are produced 
for each day of the year using a moving 5-day window, e.g. the model for 3rd January is defined 
using SD observations from 1st to 5th January from all years, the model for 4th January is defined 
using SD observations from 2nd to 6th January from all years, etc.  The given model estimates 
the SDstn for the 0.05° grid cell containing each station location on a daily timescale, provided 
the necessary explanatory variables (or predictors) are available.  From these estimates the 
residuals are calculated, i.e. actual SDstn – estimated SDstn for each station on each date.  An 
initial assessment of model performance is performed using the residuals based on statistics 
such as the root mean square error (RMSE) and (pseudo-) R2.  The pseudo R2 is a ‘goodness 
of fit’ statistic that can be used to compare output from GLMs; in this study the Cox-Snell 
method is used which calculates the likelihood ratio of a model with only a constant (i.e. an 
intercept term only) and the model with additional predictors. This first step concludes with an 
estimated SDstn for each valid grid cell for each day in the SDsat dataset, together with residuals 
at each station location which can be used in the second step in the blending process. 
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The second step utilises a GP model.  The GP is a model where functions, drawn from a 
multivariate Gaussian distribution, are conditioned on the available data. A type of covariance 
matrix can be derived through the use of a kernel, which the model interprets as how similar 
the data are over varying length scales. The result is a distribution of functions where the mean 
function is used to estimate the variable of interest and the distribution parameters provide 
confidence intervals. 

In this study, the residuals are used in a GP model to estimate a residual field and update the 
GLM estimates daily.  For each day the GP model is provided with the latitude, longitude and 
SD residual (actual SDstn – estimated SDstn) at each available station grid cell, and a radial 
basis function kernel (RBF) kernel.  A correlation length scale (CLS) hyperparameter of 2.0 
(Euclidean Distance) is currently used for the GP model, although this will be re-estimated 
during the next SDbld developmental phase from the correlation between each pair of UK 
stations.  Additionally, a fixed standard deviation hyperparameter of 1.50 hours is applied to 
the distribution of functions, which aids in finding a balance between under- and over-fitting the 
model. This value was derived from the data and is roughly the standard deviation of the GLM-
estimated SD residuals but will also be tuned during the next developmental stage of this work.  
Lastly, a spatially- and temporally-uniform variance is applied to all station residuals in the GP 
model, which is defined using the GLM fit statistics.  This avoids forcing the GP model to fit to 
the exact values of the residuals, which can result in spurious output and a smoother fit.  In the 
next SDbld developmental phase, it is likely that a station-by-station variance will be defined, 
which will account for the different measurement uncertainties at each station.  This will enable 
stations with a lower estimated uncertainty to have a greater influence on the GP model output. 

To evaluate the accuracy of the output SDbld dataset, a K-fold cross validation is performed to 
provide some independent output statistics to assess the goodness of fit.  The stations are 
split into K subsets (or folds) where for K model runs each subset of stations are excluded from 
the GLM and GP model training and retained for validation. This study uses a 15-fold cross-
validation, providing 28 or 29 stations for validation in each fold.  Validation statistics are 
calculated for each fold (e.g. RMSE, mean, percentiles), which are averaged across all folds 
to create the performance metrics for each regression-GP model combination.  A final GLM-
GP model is then defined using data from all stations (i.e. none are excluded), which is used 
to generate the SDbld output data for each day.   

The set-up of the GP model is that on a given day the ‘correction’ field tends to zero for 
locations where there are no station residuals, and the surrounding station density is such that 
the inter-station distance is significantly greater than the CLS.  In the extreme case, where 
there are no valid station observations on a given day at any location, the GP correction field 
will be zero everywhere and therefore the output from the GP model, i.e. the second stage in 
the blending process, will be identical to the output from the GLM stage of the blending 
process. It is possible that ‘bullseye’ artifacts (i.e. circular features that originate from a sizeable 
single station residual) can occur in the SDbld if a station with an outlying residual is relatively 
isolated, however these can be managed by choice of hyperparameter. 

It should be noted that even for days where there are no valid station observations, there will 
always be an output (i.e. predicted SDstn) from the GLM stage of the blending provided the 
necessary predictor variables are available on that day.  This is because the GLM is trained 
on data for all available years for a 5-day moving window and therefore the GLM coefficients 
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exist for every calendar date.  With this in mind, the data fields specified in Table 3-1 are 
proposed for the final blended SD dataset.  Users can then choose which output is best suited 
to their application based on the dataset documentation and guidance. 

Table 3-1:  Data fields proposed for the new UK SDbld dataset.  All fields will be provided at daily and 
monthly temporal resolution and at 0.05°x0.05° latitude-longitude except for the ‘SDbld: number of 
stations’ data field, which will contain a single value per day.   

Variable Description 

SDsat  
SD provided by the CM SAF SARAH-3 dataset but 
just for the UK land (to match HadUK-Grid). 

SDbld: GLM only 

SD output by the (final-selected) GLM model used 
in the GLM-GP blending process, e.g. in situ-
equivalent predicted SD for each grid cell based on 
SDsat and other predictors.  

SDbld: GLM-GP 
SD output by the (final-selected) GLM model with 
the GP correction applied, i.e. the SDbld from the 
GLM only data field above + GP correction. 

SDbld: nearest GP station 

The linear distance to the nearest grid cell with a 
valid station observation for the given day, 
expressed as a fraction of the CLS.  For grid cells 
that contain a valid station observation on that day, 
this value will be 0 for that grid cell.  For grid cells 
that are a distance of >CLS from the nearest valid 
station observation this value will be >1, and the GP 
correction field value will tend to 0 at large fractions.  
This provides an overall QC indicator for the grid 
cell.   

SDbld: number of stations 

The number of stations with a valid SDstn 
observation on the given day for the whole of the 
UK.  This provides an overall QC indicator for the 
‘SDbld : GLM-GP’ data field for the given day.  If this 
field value is 0 the fields ‘SDbld: GLM only’ and 
‘SDbld: GLM-GP’ will be identical.  If the field value 
is 20, for example, the GP correction field is likely to 
contain many zeros and the ‘SDbld: GLM-GP’ may 
suffer from ‘bullseye’ artifacts (see pg 17). 

SDbld: uncertainty A field, or combination of fields, representing the 
estimated uncertainty in SDbld for each grid cell. 
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4 Results 

4.1 Examples of SD 

Figure 4-1 shows examples of each of the datasets used in this study for 1 June 2003 (SDstn 
and SDsat) and summer 2003 (SDhad and SDsat).  In general, there is good visual agreement 
between the datasets.  In the daily data (top row), for example, the areas with low SD in the 
southeast, Northern Ireland and western Scotland are captured in both the SDstn and SDsat 
datasets.  However, there are also some differences, for example, the SDstn values in eastern 
Scotland seem to be lower than the SDsat.   

 

Figure 4-1:  Examples of each dataset used in the study a) daily SDcs_uni and b) daily SDsat on 1 June 
2003, c) SDhad and d) SDsat for June/July/August.  See Section 2 for details on each dataset. 
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For the summer 2003 example (bottom row), the SDhad data appear to show more spatial 
structure than the SDsat.  In particular, there are some circular features in southern and eastern 
parts of the UK in the SDhad data that do not appear in the SDsat data.  These circular features 
are known artifacts in the SDhad dataset and result from differences between neighbouring 
stations/regions that the interpolation process cannot reconcile (NCIC, Personal 
Communication).  Of particular note is a circular region of higher SD in central Northern Ireland 
in the HadUK-Grid data (panel c), which appears to correspond to the freshwater lake, Lough 
Neagh.  In the satellite SD data there is a corresponding less-well defined circular region of 
lower SD (compared to the surrounding SD values).  Therefore, it seems likely that the SD 
estimates from both the satellite and gridded station data may be affected by the presence of 
a large water body.  In general, the SDsat data provide a smoother field compared with the 
SDhad.   

The SDhad and SDsat summer data show many comparable features that are consistent with 
the expectations for the natural variability in SD.  For example, the higher SD along the south 
coast, a general northwest-southeast gradient in the SD and consistently lower SD over areas 
with higher orography, for example over the Pennines in northern England and the Grampians 
in Scotland.  The magnitude of the SD values is also comparable: the highest values in both 
datasets exceeds ~750 hours in the southeast, while the lowest SD values fall below ~400 
hours in the northwest of the UK and over areas of higher orography. 

4.2 Comparison between daily CS-native (SDcs) and KZ-native (SDkz) SD 

Both the SDstn and SDhad data shown in Figure 4-1 are aligned with observations from CS 
sensors, where any data from KZ sensors are converted to the equivalent CS data to ensure 
all UK SDstn data are unified (see Section 2).  As unified SDstn data are also required as input 
for SDbld, the first step in generating this new dataset is to establish:  

1. Which SDstn dataset agrees better with SDsat, therefore informing the choice of 
‘baseline’ SDstn data to use in generating the blended satellite-station SD dataset, and  

2. The performance of the Legg (2014) correction for converting between the two, i.e. 
KZ→CS and CS→KZ, therefore enabling both types of observations to be used in 
SDbld.  

Figure 4-2 shows the comparison between SDcs and SDkz observations for stations that have 
periods where both types of observations are reported during an instrumental ‘overlap’ period.  
The distribution for all data (top left in Figure 4-2 and Table 4-1) implies that SDkz is on average 
~0.4 hours less sunny than SDcs, which is consistent with previous studies that compared these 
types of sensors and derive a correction between the two (Kerr & Tabony, 2004; Legg, 2014).  
As reported in Section 2.1, the CS instrument tends to suffer from overburn, which leads to 
overestimates of SD.  However, when the SDkz - SDcs differences are partitioned by SDcs, it is 
clear these differences vary with SD.  The mean difference (μ) becomes increasingly negative 
ranging between μ=0.0 for 0≤SDcs<2 hours and μ=-0.9 for 8≤SDcs<10 hours, before becoming 
increasingly more positive up to the maximum SD (16≤SDcs<18 hours), where μ=-0.2 hours.  
The partitioned distributions are reasonably symmetrical for SDcs<6 hours but also become 
increasingly left-skewed with increasing SDcs.  This is reflected in the overall distribution, which 
is also left-skewed. 
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Figure 4-2:  Distributions of daily SDkz – SDcs differences (i.e. KZ-native minus CS-native SD).  The top left panel shows the distribution for all machups, while the 
other panels show the distributions of differences partitioned by SDcs values.  The top-right panel shows the distributions for all partitioned ranges where the central 
green line corresponds the 50th percentile (median) value, the box shows the 25th and 75th percentiles (or inter-quartile range), while the whiskers extend to the 
farthest data point within 1.5x the inter-quartile range from the box. The data points that extend past the end of the whiskers are the most extreme values. 
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Table 4-1:  Statistics showing the agreement between SDkz and SDcs (top, i.e. KZ-native and CS-native) and SDkz_con and SDcs (i.e. KZ-converted to CS and CS-
native) for all (‘All’), winter (DJF), spring (MAM), summer (JJA) and autumn (SON) daily colocated matchups.  The results below correspond to the data shown in 
Figure 4-2 and Figure 4-3. 

Data 
subset 

No. 
Data 

r 
μ  
(hours) 

σ 
(hours) 

Percentiles (hours) 

1st 5th 25th 50th 75th 95th 99th 

SDkz - SDcs 

ALL 15961 0.98 -0.4 0.9 -3.0 -2.1 -0.7 -0.1 0.0 0.5 1.4 

DJF 3945 0.97 -0.1 0.6 -1.7 -1.0 -0.3 0.0 0.0 0.5 1.6 

MAM 4040 0.97 -0.5 1.0 -3.3 -2.3 -1.0 -0.2 0.0 0.6 1.6 

JJA 3894 0.97 -0.8 1.0 -3.4 -2.5 -1.3 -0.5 0.0 0.3 1.0 

SON 4082 0.98 -0.3 0.7 -2.3 -1.4 -0.5 -0.1 0.0 0.6 1.4 

SDkz_con - SDcs 

ALL 15961 0.98 0.0 0.8 -2.0 -1.2 -0.2 0.0 0.3 1.2 2.0 

DJF 3945 0.98 0.0 0.5 -1.4 -0.7 -0.1 0.0 0.1 0.7 1.8 

MAM 4040 0.98 0.0 0.9 -2.3 -1.4 -0.4 0.1 0.4 1.3 2.1 

JJA 3894 0.98 0.1 0.9 -2.2 -1.4 -0.4 0.2 0.6 1.3 2.0 

SON 4082 0.98 0.0 0.6 -1.6 -0.9 -0.2 0.0 0.3 1.0 1.8 
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Figure 4-3:  Distributions of daily SDkz_con – SDcs differences (i.e. corrected KZ minus CS-native SD).  The top left panel shows the distribution for all machups, 
while the other panels show the distributions of differences partitioned by SDcs values.  The top-right panel shows the distributions for all partitioned ranges where 
the central green line corresponds the 50th percentile (median) value, the box shows the 25th and 75th percentiles (or inter-quartile range), while the whiskers extend 
to the farthest data point within 1.5x the inter-quartile range from the box. The data points that extend past the end of the whiskers are the most extreme values. 
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Figure 4-3 shows the comparison between SDcs and SDkz_con (i.e. KZ SD that has been 
corrected to CS SD) for the same observations that are shown in Figure 4-2.  Across all 
observations, μ has reduced to ~0.0 hours and the standard deviation (σ) has also reduced by 
~0.1 hours (Table 4-1).  However, there is still some variation in μ with SDcs, although this is 
closer to zero and reduced in magnitude compared to the SDcs vs SDkz comparison.  The 
values of μ now range between -0.2 and 0.1 hours for 0≤SDcs<12, which encompasses the 
vast majority of the observations.  For higher values of SDcs (12≤SDcs<18 hours), μ varies 
between -0.3 and -0.6 hours, suggesting that the Legg (2014) correction is less accurate for 
this SD range.  These results demonstrate that the SDkz → SDkz_con conversion (and vice-
versa) proposed by Legg (2014) is effective and can be used to unify the SDstn observations 
for the UK before blending with SDsat.  However, there are likely to be larger errors in the 
conversion for values of SD above 12 hours. 

4.3 Comparison between daily station (SDstn) and satellite (SDsat) SD 

4.3.1 CS-native (SDcs) and KZ-native (SDkz) 

Having characterised the differences between SDcs and SDkz and verified that the Legg (2014) 
KZ→CS (and vice-versa) conversion can be used to generate a unified SDstn dataset, the next 
step is to ascertain which sensor should be adopted as the baseline as input to SDbld.  Figure 
4-4 and Figure 4-5 show the distributions of daily SDsat - SDstn differences for CS-native and 
KZ-native station observations, respectively (i.e. SD observations that have not yet been 
converted from CS to KZ or vice versa).  Notably, there are considerably fewer matchups for 
SDkz (n=350,639) compared with SDcs (n=2,367,058), which is expected as the UK station 
network is dominated by CS sensors (Section 2.1).  The mean SDsat - SDstn difference (µ) and 
standard deviation (σ) for the overall distributions (i.e. all data) is 0.1 and 1.6 hours for the 
SDcs, and 0.5 and 1.2 hours for SDkz.  However, it should be noted that both distributions are 
more Laplacian in shape than Gaussian, and therefore the standard deviation should only be 
regarded as an indicative measure of the spread.  This analysis suggests that the satellite data 
are generally better aligned with the CS observations, although the SDsat vs SDstn correlation 
(r) is slightly higher for the SDkz (r = 0.95) compared with SDcs (r = 0.92).  This is the opposite 
result to that obtained by Good (2010), who found that SDkz agreed better than SDcs with daily 
SDsat for the UK derived from sub-daily Meteosat cloud type data.  CS observations are known 
to overestimate SD as they suffer from overburn, when the card continues to burn even after 
the sun is obscured by cloud (Kerr & Tabony, 2004; Legg, 2014).  Therefore, the better 
agreement between the CM SAF SDsat data and SDcs obtained in this study may be fortuatous 
as Kothe et al. (2017) found that these satellite data also slightly overestimated SD compared 
with SDstn over Europe.   

In addition to the distributions for all data, Figure 4-4 and Figure 4-5 also show the distributions 
of differences partioned by the SDstn observations in 2-hour intervals.  As expected based on 
the high mid-latitude climate in the UK, the largest number of observations fall within the 0-2 
hour range.  The mean SDsat-SDcs difference for this SD range is 0.3 hours, indicating that 
SDsat tends to be higher than SDcs for days with no or very low SD.  By contrast, the mean 
differences for the two highest SD categories (14≤SDcs<18) are quite strongly negative (µ =  
-0.6 and -1.2 hours) indicating that SDsat tends to be lower than SDcs for the sunniest days in 
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the UK.  The results for these most extreme SD categories are comparible for the SDsat-SDkz 
differences therefore demonstrating that the performance of the CS and KZ instruments is 
similar under these conditions (µ = 0.3 hours for 0≤SDkz<2 hours, and µ = -0.4 and -1.0 hours 
for the 14≤SDkz<16 and 16≤SDkz<18 hours, respectively).  However, it should be noted that 
the number of matchups for these highest SD categories is small.   

The mean SDsat-SDcs differences for the partitioned distributions within the 2-14 hours SD 
window are consistently smaller (µ = -0.1 to 0.1 hours) than those for the 0≤SDcs<2 hours and 
14≤SDcs bins, indicating a closer agreement between the CS and satellite observations in this 
SD range.  By contrast, the equivalent mean SDsat-SDkz differences are typically around 0.6 
hours (µ = 0.2 to 0.8 hours), i.e. SDsat tends to be higher than SDkz for these mid-to-high SD 
days.  This curved response in the variation of µ with SD for the SDsat-SDkz comparisons can 
be seen clearly in the top right-hand panel of Figure 4-5.  This mirrors the equivalent curved 
response that is apparent in Figure 4-2, which shows the SDcs – SDkz differences (i.e. the 
uncorrected KZ observations). 

As observed for the SDkz vs SDcs comparisons, the skew of the partitioned distributions for 
SDsat - SDcs varies with SDcs.  The distributions evolve from having right-skew for 0≤SD<4 
hours, through to left-skew for 8≤SD<14 hours, with remarkably symmetrical distributions for 
4≤SD<8.  By contrast, the SDsat - SDkz distributions are right-skewed for all two-hour SD ranges 
below 12≤SD hours.   

The curved response in the variation of µ with SD also manifests as a seasonal variation in the 
agreement between SDsat and SDstn, where the mean SDsat – SDkz daily differences are smaller 
in magnitude during the winter (µ = 0.3 hours) and largest in the summer (µ = 0.7 hours).  The 
standard deviations (σ) follow the same pattern, varying between 1.0 hours in winter and 1.5 
hours in summer.  For the SDsat vs SDcs comparison, σ is also smallest in the winter (σ = 1.3 
hours) and largest in the summer (σ = 1.8 hours).  However, µ = 0.1 hours for all seasons.  
This seasonal variation in the SDsat – SDkz and SDkz – SDcs differences is a direct result of the 
increased tendency of SDcs and SDsat to overestimate the SD for mid-to-high range values of 
SD, which are more likely to occur during the UK summer. 

Based on the overall better agreement between SDsat and SDcs compared with SDkz, the CS 
sensor is selected as the reference for the SDstn data that are input into the SDbld dataset.  Any 
valid SDkz data are converted to CS-equivalent SD (Section 4.2), and therefore SDcs_uni data 
(uncorrected CS and corrected KZ, i.e. SDcs & SDkz_corr) are used with SDsat to generate the 
SDbld dataset.  Selection of CS as a reference is also advantageous as this is the baseline that 
is also used for the SDhad dataset, therefore ensuring that the SDbld and SDsat datasets are 
more consistent with the current operational Met Office SD product for the UK. 

 



 

A blended in situ-satellite SDU 
dataset Report 

Doc. No: 
Issue: 
Date:  

SAF/CM/UKMO/CDOP4/REP/SD_UC 
1.0 

22.02.2024 

 

28 

 
Figure 4-4:  Distributions of daily SDsat – SDcs differences (CS-native).  The top left panel shows the distribution for all machups, while the other panels show the 
distributions of differences partitioned by SDcs values.  The top-right panel shows the distributions for all partitioned ranges where the central green line corresponds 
the 50th percentile (median) value, the box shows the 25th and 75th percentiles (or inter-quartile range), while the whiskers extend to the farthest data point within 
1.5x the inter-quartile range from the box. The data points that extend past the end of the whiskers are the most extreme values. 
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Figure 4-5:  Distributions of daily SDsat – SDkz differences (KZ-native).  The top left panel shows the distribution for all machups, while the other panels show the 
distributions of differences partitioned by SDkz values.  The top-right panel shows the distributions for all partitioned ranges where the central green line corresponds 
the 50th percentile (median) value, the box shows the 25th and 75th percentiles (or inter-quartile range), while the whiskers extend to the farthest data point within 
1.5x the inter-quartile range from the box. The data points that extend past the end of the whiskers are the most extreme values. 
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Figure 4-6:  Scatter-density plot showing the relationship between colocated daily CS-native and 
satellite observations over the UK for a) December/January/February, b) March/April/May,  
c) June/July/August and d) September/October/November.  The dotted line is the 1:1 line and the red 
line is the linear regression for the data shown.  The distributions are also shown on each panel by box 
and whiskers: the central orange line corresponds the 50th percentile (median) value, the box shows the 
25th and 75th percentiles (or inter-quartile range), and the whiskers extend to the farthest data point 
within 1.5x the inter-quartile range from the box. The data points that extend past the end of the whiskers 
are the most extreme values.   

4.3.1.1 Analysis of Outliers 

Figure 4-6 and Figure 4-7 are scatter-density plots showing the agreement between the CS-
native (SDcs) and KZ-native (SDkz) and satellite (SDsat) observations, partitioned by season.  
For both station datasets and for all seasons, there is a strong, near-linear relationship between 
the satellite and in situ data (r = 0.86 to 0.95).  However, there are many outliers, where the 
station data are measuring much higher SD compared with the satellite data, and vice versa, 
particularly for the SDcs data.  A closer inspection of the daily data reveals that there are 
isolated stations that appear to have some large SDsat-SDstn differences on some days 
(Appendix Figure 8-1).  In addition, the SDsat vs SDstn relationship deviates slightly from linear 
at about 10 hours SD, where the SDstn is sunnier than SDsat.  This matches the results from 
the analysis of the SDsat - SDstn distributions (Figure 4-4 and Figure 4-5), which also show the 
SDsat is less sunny than SDstn at higher values of SD. 
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Figure 4-7:  As for Figure 4-6 but for KZ-native, although note the different colour scale on each of these 
plots.  

To investigate the outlying SD values further, the SDsat vs SDstn correlation (r), mean SDsat - 
SDstn difference (µ) and standard deviation (σ) at each station are calculated and shown as a 
function of station elevation in Figure 4-8 and Figure 4-9 for CS-native and KZ native, 
respectively.  These results suggest that there are specific stations where the SDsat vs SDstn 
relationship may be weaker, which are characterised by r <0.6, µ<|2| hours and/or σ<2.5 hours 
(shown as dashed lines in the Figures).  As the SDsat data are estimated from a single sensor, 
using a uniform approach, it seems more likely that the SDstn observations are spurious for 
these stations.  Therefore, these stations are flagged as ‘suspect’ using these statistical 
thresholds, which have been selected through expert judgement in order to automate the 
identification of outlying stations.  The tests are applied on a seasonal basis, where a station 
is flagged as an outlier if it fails one (yellow), two (orange) or three (red) of these tests in any 
season (the colours refer to the data points in Figure 4-8 and Figure 4-9).  In addition, this 
outlier screening process includes a check for any stations where >20% of the daily SDsat - 
SDstn difference across all seasons and years is >5 hours (not shown in the figures).  Notably, 
for the station data used in this study, there are no stations that fail this latter test that have not 
also failed at least one of the other three statistical tests.  However, this test may remove 
additional stations when the dataset is extended in future.   
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Figure 4-8:  The satellite vs CS-native station correlations (top row), mean differences (middle row) and standard deviations of the differences (bottom row) shown 
as a function of the station elevation for December/January/February (first column), March/April/May (second column), June/July/August (third column) and 
September/October/November (fourth column).  Each dot represents a different station.  Stations that fail the statistical threshold tests (dotted line(s) on each panel) 
for each season are indicated in yellow (fails one test), orange (fails two tests) and red (fails three tests).  
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Figure 4-9:  The satellite vs KZ-native station correlations (top row), mean differences (middle row) and standard deviations of the differences (bottom row) shown 
as a function of the station elevation for December/January/February (first column), March/April/May (second column), June/July/August (third column) and 
September/October/November (fourth column).  Each dot represents a different station.  Stations that fail the statistical threshold tests (dotted line(s) on each panel) 
for each season are indicated in yellow (fails one test), orange (fails two tests) and red (fails three tests).  
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Table 4-2:  List of stations removed from the analysis through the outlier screening process.  Columns ‘Stn ID’, ‘Lat’, ‘Long’ and ‘H’ provide the station identification 
number, latitude, longitude and height, respectively.  A red-coloured box in columns ‘r’, ‘μ’ and ‘σ’ indicates the failed threshold-based test(s) within each season 
(‘DJF’ = December/January/February, ‘MAM’ = March/April/May, ‘JJA’ = June/July/August, ‘SON’ = September/October/November).  A red-coloured box in the final 
column (>20% >5 hours) indicates stations that have >20% of the daily SDsat – SDstn differences that are >5 hours.  See text for further details. 

Stn ID Lat  
(°N) 

Long 
(°E) 

H 
(m) 

DJF MAM JJA SON >20% 
>5 h r μ σ r μ σ r μ σ r μ σ 

Campbell-Stokes  

105 58.867 -4.708 249              

107 57.144 -4.677 21              

111 56.94 -4.238 351              

128 57.334 -3.600 218              

130 57.335 -3.606 220              

140 57.354 -3.345 213              

147 57.006 -3.398 339              

178 56.969 -2.207 4              

394 53.445 -0.202 108              

432 52.572 1.738 4              

461 52.227 -0.465 85              
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Stn ID Lat  
(°N) 

Long 
(°E) 

H 
(m) 

DJF MAM JJA SON >20% 
>5 h r μ σ r μ σ r μ σ r μ σ 

564 53.064 -0.963 70              

608 52.073 -1.334 87              

613 51.62 -1.099 57              

715 51.68 -0.056 32              

810 50.865 0.336 18              

1070 54.934 -2.964 28              

1216 51.88 -5.124 111              

1233 51.964 -3.629 330              

1333 50.991 -4.462 142              

1341 50.686 -4.234 131              

1347 51.2 -4.113 145              

13343 54.741 -4.958 27              

30435 58.635 -3.06 35              
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The list of stations that fail any of these tests within the SDkz, SDcs, and SDcs_uni datasets is 
given in Table 8-1 (SDkz and SDcs; Appendix) and Table 4-2 (SDcs_uni).  The majority of SDstn 
data that are classified as outliers are from CS sensors, which is expected given that the 
number of KZ sensors across the UK station network is considerably lower.  Only one KZ 
station (station ID = 105) fails the outlier screening process (Appendix, Table 8-1).  Notably, 
the list of stations that fail the statistics tests for the SDcs_uni is almost identical to the list for 
SDcs + SDkz, with the exception of station 113 (north-central Scotland), which fails the 
correlation test for DJF in the SDcs dataset but passes all tests for all seasons for SDcs_uni.  
These stations are excluded from the input SDcs_uni data used to generate SDbld dataset 
(Section 3.2 and Section 4.5).  For the stations that are not flagged as outliers, the results in 
Figure 4-8 and Figure 4-9 imply there is a slight decline in r and a slight increase in σ with 
increasing elevation for both the CS-native and KZ-native results, which is slightly more 
marked in winter (December/January/February).  This result suggests that elevation should be 
investigated as an additional predictor variable in the next developmental phase of the 
regression model used to generate the SDbld dataset (Section 3.2 and Section 4.5). 

Analysis of the time series of daily SDsat - SDstn differences for individual stations shows that 
there are many negative and positive spikes that are several hours in magnitudes, which 
occasionally exceed 10 hours.  These are the extreme outliers that are visible in Figure 4-6 
and Figure 4-7.  However, the source of these spikes is currently unknown, and they could 
result from the satellite and/or station SD data.  Therefore, these data have not been removed 
from the datasets and may affect the resulting SDbld production.  There are also specific time 
periods when the satellite-station SD agreement is clearly worse, which are seen in the 
comparisons between SDsat and all SDstn variants.  For example, station 1007 shows a 
generally stable time series of SDsat – SDcs_uni differences with the exception of the period 
between the beginning of 2014 and the end of 2016, where the difference becomes more 
positive by up to a few hours (Appendix Figure 8-2).  The individual SDcs_uni and SDsat time 
series suggest that the SDcs_uni data are less sunny than adjacent years for this station, 
whereas the SDsat data for these years are more typical.  As this anomalous period seems to 
be limited to a single station, it seems most likely there was an issue with the SDstn observations 
for this period, as problems in the SDsat data (e.g. calibration, instrumental error, etc) are likely 
to manifest quite consistently and simultaneously across all stations/grid cells.  However, there 
are periods where the SDsat – SDcs_uni difference is anomalously large that are consistent 
across many stations.  For many UK stations, the SDsat – SDcs_uni difference is more positive in 
1991 and 1992, particularly in this latter year.  The SDcs_uni for this period appears to be slightly 
lower than usual, while the SDsat data appear more ‘normal’.  An example for station 43 is 
shown in Figure 8-3 (Appendix).  This particular SD discrepancy that seems to affect many of 
the SDsat – SDcs_uni station time series may be a result of the eruption of Mount Pinatubo on 3 
June 1991, which affected global climate through the ejection of large quantities of gas and 
ash into the atmosphere.  A reduction in observed SDstn following major volcanic eruptions, 
including Pinatubo, has been reported in several studies and is therefore expected (Magee et 
al., 2014; Obregón et al., 2020; Sanchez-Lorenzo & Wild, 2012; Stanhill et al., 2005).  
Therefore, the observed reduction in SDcs_unified is likely to be a real effect.  Pfeifroth et al. (2018) 
found a similar positive satellite-minus-station anomaly difference for solar radiation from the 
SARAH-2 dataset after the 1991 Pinatubo eruption.  Post-eruption lofted volcanic aerosols and 
dust are also known to affect satellite observations at visible and thermal wavelengths, and 
consequently these data are used to detect and track volcanic emissions (Francis et al., 2012; 
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Naeger & Christopher, 2014).  Therefore, it seems likely that the SDsat data could also be 
affected by the eruption of Mount Pinatubo, but perhaps to a lesser degree than the SDcs_uni 
data.  Time-dependent differences in the SDsat and SDstn data are examined further in Section 
4.4 using the HadUK-Grid SD dataset. 

4.3.2 CS-unified (SDcs_uni) results 

Based on the results of the analysis of SDsat and SDstn presented in the previous sections, 
SDcs_uni has been selected as the input SDstn for SDbld, although 24 stations that are considered 
to be ‘outliers’ have been removed from this dataset.  Table 4-2 presents the statistics for the 
SDsat vs SDcs_uni comparisons for stations that have passed the outlier screening process 
outlined in Section 4.3.1.  The SDsat - SDcs_uni distributions (Figure 8-4, Appendix) are almost 
identical to those presented in Figure 4-4 for SDsat - SDcs differences.  The statistics confirm 
the close overall agreement between SDsat and SDcs_uni, where µ ~0.1 hour with no seasonal 
variation.  The correlation and standard deviation are both lowest in the winter (r=0.87 and 
σ=1.2 hours) and highest in the summer (r=0.92 and σ=1.8 hours).  However, as noted earlier, 
there are some large differences of several hours, which are reflected in the extremes of the 
distributions (1st and 99th percentiles are ~-4.2 hours and ~4.5 hours respectively).  These data 
need to be handled with care when blending the SDsat and SDstn data to create SDbld., which 
will be addressed further in the next developmental phase for this product.  
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Table 4-3:  Statistics for the SDsat vs SDcs_uni relationship for all (‘All’), winter (DJF), spring (MAM), summer (JJA) and autumn (SON) daily colocated matchups.  
The 24 stations that fail the outlier screening process described in Section 4.3.1 are excluded from these statistics. 

Data 

subset 

No. 

Data 
r 

μ  

(hours) 

σ 

(hours) 

Percentiles (hours) 

1st 5th 25th 50th 75th 95th 99th 

ALL 2700426 0.93 0.1 1.5 -4.2 -2.4 -0.5 0.0 0.7 2.6 4.5 

DJF 661871 0.87 0.1 1.2 -3.7 -1.7 -0.2 0.0 0.5 2.2 3.8 

MAM 685839 0.92 0.1 1.7 -4.6 -2.7 -0.7 0.0 0.9 2.8 4.8 

JJA 683402 0.92 0.0 1.8 -4.6 -2.8 -0.9 0.0 0.9 3.0 5.0 

SON 669314 0.91 0.1 1.4 -3.6 -2.0 -0.4 0.0 0.7 2.4 4.1 
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4.4 Comparison between HadUK-Grid (SDhad) and satellite (SDsat) SD 

In addition to producing the SDbld dataset that is based on both SDsat and SDcs_uni, a satellite-
only daily and monthly SD product for the UK is also envisaged to complement the HadUK-
Grid SD dataset (SDhad).  Therefore, it is necessary to also quantify the agreement between 
SDsat and SDhad to inform the users of any differences.   

Figure 4-11 is a scatter-density plot showing the relationship between the monthly totals of 
SDsat and SDhad within each season for all UK grid cells between 1983 and 2022.  As seen for 
the SDsat vs SDstn comparisons, the SDsat and SDhad datasets are highly correlated and linear, 
indicating good overall agreement between the two datasets.  The small non-linearity observed 
at higher SD values in the SDsat vs SDstn comparisons is not evident in the SDsat vs SDhad 
relationship.  The overall scatter is also smaller for the SDsat and SDhad comparison, although 
there are a few outliers in spring (MAM) where SDhad is around twice that of SDsat, although 
this is at least partly expected given the difference in scale (daily vs. monthly) 

 

Figure 4-10:  Scatter-density plot showing the relationship between monthly totals of SDsat and SDhad 
for all UK grid cells within the period 1983 to 2022 for (a) December/January/February (DJF), (b) 
March/April/May (MAM), (c) June/July/August (JJA), and (d) September/October/November (SON). 

Figure 4-12 shows maps of the mean monthly SDsat – SDhad differences for each season, 
together with the distributions of those differences.  Overall, the distributions suggest that SDsat 
tends to sunnier than SDhad, with majority of the monthly mean differences falling in the -10 to 
+15 hours range.  The maps shows that there is some spatial structure in the SDsat – SDhad 
differences, where the more negative differences (i.e. satellite less sunny than HadUK-Grid) 
correspond to areas of higher orography, for example, the Pennines in Northern England and 
the Scottish Highlands.  The most positive differences (i.e. satellite sunnier than HadUK-Grid) 
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are located in the south and east of the UK.  In all seasonal difference maps, there is a 
prominent circular outlying area with high SD difference at ~51.0°N, ~2.3°W that is particularly 
evident in the autumn.  This is similar to the circular features seen in the seasonal SDhad 
example shown in Figure 4-1 (Section 3.1), which are likely to be a influencing effect from one 
station that results of the HadUK-Grid interpolation process.  In addition, the circular feature 
colocated with Loch Neagh in Northern Ireland that was identified in Figure 4-1 in both SDsat 
and SDhad is also clearly visible in all seasons but is particularly strong in the spring and 
summer.  The SDsat – SDhad differences also tend to be positive along the south-facing coasts 
of the UK, for example in southern England and Wales, particularly in summer (JJA).  This 
could be a result of the interaction between Meteosat viewing geometry, land-sea cloud 
contrast and related cloud parallax effects, whereby the satellite is observing the surface at an 
angle through a cloud-free atmosphere, but the skies above the ground point are cloud-
covered.  In this situation, the resulting SDsat could conceivably be higher than observed in 
situ, and therefore in SDhad. The variation in SDsat – SDhad differences as a function of elevation, 
satellite view angle and distance from the coast will be explored in future work.  In the 
meantime, this analysis further supports exploring some of these variables as additional 
predictors when producing an SDbld dataset. 

Figure 4-13 shows the time series of the UK-wide mean SDsat and SDhad for each month 
between January 1983 and December 2022.  The figure shows both the actual SD values and 
the anomalies, as well as the time series of SDsat - SDhad differences.  On the panels showing 
the SD differences (b and d), the dates of several volcanic eruptions are marked, together with 
the transition date from MVIRI to SEVIRI observations in the SDsat record (1 January 2006).  It 
appears that SDsat is sunnier than SDhad during the MVIRI portion of the record (1983-2005) 
immediately after the two major volcanic eruptions that occurred in this period, which is 
consistent with the individual SDsat - SDstn time series discussed in Section 4.3.1.1  In the case 
of the Mount Pinatubo (3 June 1993), the anomaly differences in particular are more positive 
for almost 2 years post-eruption.  As reported earlier in Section 4.3.1.1, SDstn (and therefore 
SDhad) seem to report lower SD during this period, while the SDsat observations seem to be 
less affected.  The transition from MVIRI to SEVIRI in 2006 also appears to cause a 
discontinuity in the differenced time series, where the SDsat are sunnier than SDhad.  These 
likely non-climatic discontinuities in SDsat need to be considered carefully when producing 
SDbld, as they will propagate through to the final dataset where they may cause considerable 
errors when using the SDbld data for any time series analysis. 
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Figure 4-11:  Maps of mean monthly SDsat-SDhad differences for the period 1983-2022 (top row) for December/January/February (DJF), March/April/May (MAM), 
June/July/August (JJA) and September/October/November (SON).  The distributions of those differences are also shown (bottom row). 
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Figure 4-12:  Time series of (a) SDsat and SDhad, where a 24-month rolling mean is also shown for clarity, (b) SDsat - SDhad differences, (c) SDsat and SDhad anomalies 
(with respect to the 1983-2022 baseline period) and (d) SDsat - SDhad anomalies.  Major volcanic eruptions are marked on panels (b) and (d).  
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4.5 Blended satellite-station SD (SDbld)  

In this section, the output from a preliminary blended satellite-station SD dataset, SDbld, is 
presented.  This initial SDbld dataset will be developed further in future work, with the intention 
of delivering a new Met Office operational SD product for the UK in the next 1-2 years.  As 
stated in Sections 4.2 and 4.3, the SDcs_uni station dataset is used as input for the SDbld dataset, 
together with SDsat.  This SDcs_uni dataset comprises SDcs data that have been extended and/or 
infilled with adjusted SDkz data (SDkz_corr) using the Legg (2014) correction.   

Figure 4-14 shows the daily regression model coefficients for the three GLMs trialled in this 
preliminary analysis (see Equation 3-3, Equation 3-4, Equation 3-5), together with the two 
goodness-of-fit statistics, RMSE and pseudo-R2 (Section 3.2).  All the time series are noisy 
(also see Figure 8-5, Appendix), which suggests that the 5-day window trialled here to generate 
the GLM models is too short and a longer window, e.g. 15 or 31 days is required.  This will be 
explored in the next developmental stage for this dataset.  The RMSE and pseudo-R2 are 
virtually identical for all three models; there are small differences, but these are not visible to 
the naked eye.  Both measures have a clear annual cycle, which peaks in the summer, ranging 
between ~1.2 and ~1.8 hours for RMSE, and ~0.4 and ~0.9 hours for the pseudo-R2.  This 
suggests a lower confidence in the SDbld data in winter compared with summer.   

The model coefficients also show annual cycles, although the intercept (d) coefficient is highly 
variable/noisy (Figure 4-13 panels g, h & i).  (Note that the same data are also shown in Figure 
8-5 in the Appendix, but with different y-ranges that are tailored to the values for each type of 
coefficient; the panels showing the coefficients in Figure 4-14 are plotted on the same y axes.)  
Both the c and d coefficients peak in the summer, whilst the a and b coefficients peak in the 
winter.  For GLM 1, the contribution of the d, or intercept, coefficient ranges between ~0.5 and 
~1.0 hours, and for GLM 2 and 3, between ~-4.0 and ~2.0 hours, although there is an outlying 
trough around day 60 that extends to almost -6.0 hours for both these models.  The c 
coefficients (the coefficient for SDsat) for GLM 1 and 2 are almost identical and range between 
~0.7 and ~0.9, while the range for GLM 3 is slightly larger, ranging between ~0.5 and ~1.0.  
Therefore, the maximum possible contribution from this model component is up to ~17 hours 
for GLM 1 & 2 and ~19 hours for GLM 3 for the UK summer, where the maximum possible SD 
is 19 hours (Section 2.1).  The b coefficients (the coefficient for lat; GLMs 2 & 3 only) range 
between ~-0.02 and 0.12.  For the latitude of the UK, which varies between ~50 to ~60°N, the 
contribution of these coefficients to the GLM-calculated SD therefore ranges between ~-1.2 
and 7.2 hours.  The a coefficient for GLM 3 ranges between ~-0.03 and ~0.06.  The contribution 
of this SDsat

2 coefficient to the GLM-calculated SD therefore ranges between ~-0.6 and 
~0.5 hours, assuming a maximum possible SD of 8 hours and 19 hours in UK winter and 
summer, respectively (Section 2.1).  The largest contribution to the GLM-calculated SD in all 
models is therefore from the non-squared SDsat term, followed by the latitude term (GLM 2 & 
3 only). 
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Figure 4-13:  Generalised Linear Model coefficients used to blend SDstn and SDsat and the goodness of 
fit statistics for the three models trialled in this study (see Section 3.2).  The top row shows the a 
coefficients (panel a), second row the b coefficients (panels b & c), third row the c coefficients (panels 
d, e & f), and the fourth row the d coefficients, or y-intercept, for each model (panels g, h & i).  The fifth 
row shows the Root Mean Square Error (RMSE) for each model (panels j, k & l), while the bottom row 
shows the Psuedo-R2 (panels m, n & o; see Section 3.2).  The results for Model 1 (GLM 1; Equation 
3-3) are shown in the first column, Model 2 (GLM 2; Equation 3-4) in the second column and Model 3 
(GLM 3; Equation 3-5) in the third column.  Note that the same y-axis range is used for all model 
coefficients; Figure 8-5 (Appendix) shows the same data where the panels showing the coefficients have 
y-axis ranges that are specific to each group of coefficients. 

Figure 4-14 shows an example of the final daily SDbld dataset, which is based on GLM 1 
(Equation 3-3) that uses only SDsat as input.  The example is for the same day shown in Figure 
4-1, which provides the corresponding SDsat and SDcs_uni data (1 June 2003).  As expected, 
the GLM-estimated SD has the same overall pattern as the SDsat on this day, with most of the 
SDsat – GLM SD differences falling within ±1 hour SD (Figure 4-14b).  The differences between 
the GLM 1 output and the SDcs_uni are typically within ±2 hours, although there are some 
stations with much larger differences.  For example, in southeastern Northern Ireland there is 
a single coastal station that is ~8 hours sunnier than the GLM 1 output, denoted by a bright 
yellow filled circle.  Notably, the three most westerly mainland coastal stations in West Wales 
and West Scotland also show some of the most positive SDcs_uni – GLM 1 SD differences  
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(~4-6 hours) across the UK.  However, the satellite data do not support very high SD at this 
coastal station location in eastern Northern Ireland but do confirm higher SD to the East of the 
5°W meridian, which is consistent with the three aforementioned coastal station observations 
on the UK mainland.  This suggests that the high-SD observation from the coastal station in 
eastern Northern Ireland may be erroneous.   

A further example of station locations with large SDcs_uni – GLM 1 SD differences is the cluster 
of four stations in northeast Scotland where the SDcs_uni observations are ~4 hours less sunny 
than the GLM 1 output (~57°N, ~2°W).  Figure 4-1 confirms that SDsat is ~3-4 hours sunnier 
than SDcs_uni for these stations.  In this case, it seems more likely that the SDsat data may be 
overestimating the SD in this region, given the consistency in the SDcs_uni – GLM 1 SD across 
the four stations on this date.  The effect of these four stations is clear in the GP SD correction 
field, which is based on the SDcs_uni – GLM 1 residuals: there is a regional ~-3 hour SD 
correction in this field in the northeast of Scotland (Figure 4-14d).  Consequently, the combined 
GLM 1 + GP SDbld (Figure 4-14e) has lower SD compared with the GLM 1-only SD (Figure 
4-14a) in this region, and the SDcs_uni – GLM SD differences (Figure 4-14f) for the four stations 
are much closer to zero.  The benefit of the GP component of the satellite-station SD blending 
process is clear in this example, where it has aligned the overestimated SD from the satellite 
observations with the SDstn data to produce (what appears to be) a more accurate SD 
representation.  

However, the GP component of the SD blending process can be similarly detrimental.  For 
example, the influence of the likely-erroneous high-SDcs_uni outlier in southeastern Northern 
Ireland can also be seen in Figure 4-14d.  In this case, it appears that this station is incorrectly 
‘brightening’ the SD to the North and the East (Figure 4-14d).  Such errors are more likely to 
occur where the station density is low, which needs to be managed carefully when finalising 
an operational SDbld dataset.  The spatial patterns in Figure 4-14d also indicate that the 
geographical influence of the GP corrections is extensive and suggests that the CLS used in 
the GP model may be too large.  As noted in Section 3.2, the CLS will be revisited in the next 
developmental stage for the SDbld dataset.  Nevertheless, the resulting combined GLM 1 + GP 
SD field shown in Figure 4-15e is very promising.  The overall pattern of the SDsat data is well 
preserved but the influence of the SDcs_uni data can clearly be seen locally.   

The results for the two other models trialled in this study, GLM 2 + GP (Figure 8-6) and GLM 
3 + GP (Figure 8-7), are very similar to those obtained for GLM 1 + GP, although there are 
some small differences.  The most notable are visible in the SDsat – GLM SD differences, which 
are shown in panel b in each figure.  There is a slight brightening North-to-South gradient in 
the GLM 2 SD (Figure 8-6b) and GLM 3 SD (Figure 8-7b) with respect to the GLM 1 SD (Figure 
4-15b), which results from the additional lat term present in both GLM 2 & 3.  Perhaps the most 
noticeable difference between the three GLMs is that GLM 3 appears to be slightly ‘sunnier’ 
overall compared with GLM 1 & 2.  However, after the GP model correction has been applied, 
the final SDbld maps, which are shown in panel e in each of the figures, are almost identical.   
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Figure 4-14:  Example model output for 1 June 2003 showing the a) Generalised Linear Model 1 SD (GLM 1, Equation 3-3), b) SDsat – GLM 1 SD, c) SDcs_uni – 
GLM 1 SD, d) the GP SD correction, e) the combined GLM 1 + GP corrected SD output, and f) SDcs_uni – combined GLM 1 + GP modelled SD. 
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Table 4-4:  Pooled K-fold validation statistics for each model tested in this study.  Model 1 
uses GLM 1 (Equation 3-3), Model 2 uses GLM 2 (Equation 3-4) and Model 3 uses GLM 3 
(Equation 3-4).  In each case, the validation results represent the SDbld – SDcs_uni statistics.  
Results are shown for the GLM-only and combined (GLM + GP) model output.  The statistics 
presented include the Root Mean Squared Error (RMSE), mean difference (µ), standard 
deviation (σ) and percentiles. 

Statistic Model 1 Model 2 Model 3 

 GLM only 
(hours) 

with GP 
(hours) 

GLM only 
(hours) 

with GP 
(hours) 

GLM only 
(hours) 

with GP 
(hours) 

RMSE 1.4 1.2 1.4 1.2 1.4 1.2 

µ -0.2 -0.0 -0.2 -0.0 -0.2 0.0 

σ 1.4 1.2 1.4 1.2 1.4 1.2 

Minimum -14.5 -14.7 -14.9 -14.7 -14.2 -14.7 

1st  -4.0 -3.4 -4.0 -3.4 -3.9 -3.4 

5th -2.3 -1.9 -2.3 -1.9 -2.3 -1.9 

10th -1.6 -1.3 -1.6 -1.3 -1.6 -1.3 

25th -0.8 -0.5 -0.9 -0.5 -0.8 -0.5 

50th -0.4 0.0 -0.4 0.0 -0.4 0.0 

75th 0.6 0.5 0.6 0.5 0.6 0.5 

90th 1.6 1.3 1.6 1.3 1.6 1.3 

95th 2.2 1.9 2.2 1.9 2.2 1.9 

99th 3.7 3.2 3.7 3.2 3.7 3.2 

Maximum 14.4 15.0 14.4 15.0 14.5 15.0 

 

This high degree of similarity between the three models trialled in this study is also evident in 
the K-fold validation statistics (Table 4-2).  Validation results are presented separately for each 
of the three GLMs (i.e. before the GP model is added), and for each of the GLMs combined 
with the GP model.  The results illustrate there is very little difference between the performance 
of each of the GLM models.  The RMSE, µ and σ values for all three GLMs are identical at 
1.4 hours, -0.2 hours and 1.4 hours, respectively.  However, there are some small differences 
in the far extremes.  In particular, the 0th percentile for GLM 3 is up to 0.7 hours less negative 
than for GLM 1 & 2.  However, when the GP model is added, the performance of SDbld is 
improved and there is no statistical difference between the different SDbld variants, confirming 
this conclusion drawn previously based on the example SDbld maps (Figure 4-14e, Figure 8-6e 
and Figure 8-7e).  For the combined model (i.e. GLM + GP), the RMSE, µ and σ are all reduced 
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by 0.2 hours, indicating that there is only a small overall effect from the GP model at a national 
scale.  However, as evident from the example SDbld maps (e.g. Figure 4-14d, e and f) the local 
effect can be substantial; additional work will be carried out in the next phase of this product 
development to assess the impact of the GP and improve on this further. 
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5 Conclusions 

The aim of this study is to produce a new blended SD dataset (SDbld) for the UK that is based 
on a combination of satellite and station observations of SD.  The CM SAF SD dataset provided 
by the SARAH-3 product is used as the input satellite dataset (SDsat), whilst station data from 
the Met Office MIDAS database are used as the input station data (SDstn).  An SDsat-only 
product for the UK is also planned to complement this new blended dataset and the existing 
HadUK-Grid SD product (SDhad), which is based on station data alone.  

As a first step in creating SDbld, an in-depth comparison is performed between SD recorded by 
the two different sensor types used within the UK: Campbell Stokes (CS), a traditional SD 
sensor invented over 150 years ago, and Kipp & Zonen (KZ), a more modern sensor that uses 
the WMO definition of 120 Wm-2 to define bright sunshine.  As reported by other studies, this 
work finds that CS records higher SD compared with KZ, particularly for mid-range SD values 
(~4-12 hours SD).  However, the model proposed by Legg (2014) is found to be very effective 
in converting between the two types of measurements, except for at very high SD values (≥12 
hours).  Based on all available observation pairs across all values of SD, the correlation (r) 
between the CS and converted KZ observations is 0.98, the mean difference (µ) is 0.0 hours 
and the standard deviation (σ) is 0.8 hours. 

The second step required to generate SDbld is to perform a comparison between daily SDsat 
and each type of daily station SD measurement.  The satellite data are found to be more closely 
aligned with the CS observations and therefore CS is chosen as the baseline for the SDstn data.  
This choice is advantageous as CS is also the baseline for SDhad, so the new SDsat and SDbld 
datasets should also be consistent with SDhad.  The Legg (2014) conversion is therefore used 
to create a unified station dataset that is aligned with the CS sensor (SDcs_uni) as input into 
SDbld.  However, 24 UK stations where the SDsat vs SDcs_uni agreement is spurious are 
excluded from this final dataset based on an automated outlier screening process that uses 
statistical thresholds defined through expert judgement.  Based on all remaining valid data 
from the stations that pass these statistical tests, the SDsat vs SDcs_uni agreement is found to 
be excellent, where r is 0.93, µ (SDsat - SDcs_uni) is 0.1 hours and σ is 1.5 hours.  The 
SDsat vs SDcs_uni correlation and standard deviation are both lowest in the winter (r=0.87 and 
σ=1.2 hours) and highest in the summer (r=0.92 and σ=1.8 hours), whilst µ ~0.1 hour with no 
seasonal variation.   

The analysis of the SDsat vs SDcs_uni time series at individual stations indicates there that are 
many isolated days where the SDsat - SDcs_uni differences exceed several hours.  The cause of 
these apparently random discrepancies is unknown and so these data are not removed from 
the final satellite/station datasets.  Discontinuities in the SDsat - SDcs_uni time series are also 
evident.  In particular, SDcs_uni is observed to be simultaneously and systematically lower 
across the UK SD station network following major volcanic eruptions, such as Mount Pinatubo 
in 1991.  However, SDsat does not seem to be (as) affected, leading to positive SDsat - SDcs_uni 
differences for up to 1-2 years following an eruption event.  Isolated discontinuities in the 
SDsat - SDcs_uni time series at some individual stations are also present.  As the timing and 
nature of these discontinuities vary between stations, they are more likely to reflect problems 
with the station observations as satellite-related issues are expected to affect the 
SDsat vs SDcs_uni agreement more consistently across the station network.  These observational 
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outliers and discontinuities need to be considered carefully when producing the final 
operational SDbld dataset. 

Additionally, a comparison between monthly SDhad and monthly SDsat is performed so that the 
differences between the two datasets can be communicated to users.  These independent SD 
datasets are in very good agreement, although SDsat provides slightly higher estimates of SD 
compared with SDhad. The largest-magnitude differences are seen over areas of high 
orography, such as the Pennines and the Scottish Highlands.  In addition, there are some 
circular artifacts in the SDhad dataset that are attributed to the interpolation process used to 
generate this dataset and are not present in the SDsat, which generally provides a smoother 
field.  Analysis of the complete SDsat - SDhad time series between 1983 and 2022 confirms the 
earlier result that the satellite-station differences become more positive for up to 1-2 years after 
major volcanic eruptions.  In addition, a discontinuity in the SDsat - SDhad time series is observed 
in January 2006 where this SD difference becomes more positive.  This is attributed to the 
transition between MVIRI onboard MFG and SEVIRI onboard MSG, which indicates that the 
SDsat timeseries is not perfectly homogeneous, which may have implications for users who 
wish to use this dataset for timeseries analysis. 

In the final part of this study, a preliminary, experimental blended SD dataset is generated 
using the CM SAF SDsat dataset and the SDcs_uni dataset produced and verified as part of this 
study.  Firstly, a Generalised Linear Model (GLM) is used to predict SDcs_uni for all UK grid cells 
in the SDsat dataset.  Three GLMs are trialled that use different combinations of predictors: 
SDsat only, SDsat & latitude, and SDsat & latitude & SDsat

2.  Secondly, a Gaussian Process (GP) 
model is used to estimate a ‘correction’ field based on the residuals (observed SDcs_uni - GLM-
predicted SD at actual station locations), which is then added to the SD field output by the 
GLM.  The resulting SDbld datasets appear realistic and retain the overall pattern in SD provided 
by the satellite observations, but with ‘localised’ adjustments based on real station 
observations.  Based on K-fold validation statistics, there is negligible difference in 
performance between the three GLMs trialled in this study.  The addition of the GP model 
improves the national validation statistics slightly and RMSE, µ and σ all improve by ~0.2 
hours.  However, improvements (with respect to station data) can be more substantial at a 
local level.   

Further work is required to deliver an operational blended satellite-station SD dataset for the 
UK, which is planned in the next 1-2 years.  Based on the analysis presented in this study, this 
additional work will need to include the following (see Sections 3.2 and 4.5 for further 
information): 

• Investigate the application of additional station QC flags that are available in MIDAS-
Open to improve the station data quality and reduce outliers/spurious observations. 

• Investigate the use of an adjusted day-length calculation based on the solar zenith 
angle (SZA) exceeding e.g. 2.5° (other studies suggest that bright sunshine cannot 
occur for SZA<2.5°). 

• Assess the use of elevation and distance from coast, and possibly principal 
components, as additional predictors within the GLM. 

• Investigate the use of a data transformation before applying the GLM. 
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• Investigate using moving temporal windows of different lengths, e.g. 15 days or 31 
days, to define the training data for the GLM in order to generate smoother daily 
regression coefficients. 

• Include point-by-point variance within the GP model, e.g. variation in the measurement 
uncertainty at each station. 

• Define the correlation length scale (CLS) to apply in the GP model. 
• Tune the standard deviation hyperparameter applied to the distribution of functions 

within the GP model. 
• Calculate per-grid cell uncertainties for the GLM + GP modelled SD; ideally including 

observational uncertainties from the station and satellite data, uncertainty due to the 
KZ→CS conversion, observational coverage, observational inhomogeneity 

In addition, delivery of an operational product will require pre-processing and ingestion of 
real-time station and satellite SD data, which may have different characteristics and 
artifacts from the data utilised in this study. 
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7 Glossary – List of Acronyms in alphabetical order 

AWSDLY Automatic Weather Station Daily values station network 

CDR  Climate Data Record 

CM SAF Satellite Application Facility on Climate Monitoring 

CLS  Correlation Length Scale 

CS  Campbell Stokes SD sensor 

DJF  December/January/February 

DNI  Direct Normalised Irradiance 

DLY3208 Daily observations from Metform 3208 station network 

ECV  Essential Climate Variable 

EUMETSAT  European Organisation for the Exploitation of Meteorological Satellites 

FCDR  Fundamental Climate Data Record 

FMI  Finnish Meteorological Institute 

GC-Net Greenland Climate Network 

GCOS  Global Climate Observing System 

GP  Gaussian Process 

HadUK-Grid  Met Office Hadley Centre UK Gridded datasets 

ICDR  Interim Climate Data Record 

ID  Identification 

JJA  June/July/August 

KZ  Kipp & Zonen SD sensor 

MAB  Mean of the Absolute Bias 

MAD  Mean Absolute Difference 

MAM  March/April/May 

MFG  Meteosat First Generation 

MIDAS  Met Office Integrated Data Archive System 

MSG  Meteosat Second Generation 
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NCIC  National Climate Information Centre (based at the Met Office) 

NCM   National Climate Message station network 

QC  Quality Control 

RBF  Radial Basis Function 

RMS  Root Mean Square 

RMSE  Root Mean Square Error 

SARAH-3 Surface Solar Radiation Data Set – Heliosat 3rd version 

SD  Sunshine Duration 

SEVIRI  Spinning Enhanced Visible and Infrared Imager 

SID  Surface Incoming Direct Radiation 

SON  September/October/November 

SYNOP surface SYNOPtic observations station network 

SZA  Solar Zenith Angle 

UK  United Kingdom 

WMO  World Meteorological Organization 
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8 Appendix 

 
 

Figure 8-1:  Map of SDsat (background) overlayed by the colocated SDcs_uni observations, which are 
shown by the coloured circles.  For most station/satellite matchups, the agreement is quite good, but 
there are clear outliers.  For example, the high station SD (bright spot) and corresponding low satellite 
SD that occurs in the Midlands at about 1.1°W, 53.1°N.  The data shown are from 17 April 1991. 
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Table 8-1:  List of stations removed from SDcs and SDkz through the outlier screening process.  Columns ‘Stn ID’, ‘Lat’, ‘Long’ and ‘H’ provide the station identification 
number, latitude, longitude and height, respectively.  A red-coloured box in columns ‘r’, ‘μ’ and ‘σ’ indicates the failed threshold-based test(s) within each season 
(‘DJF’ = December/January/February, ‘MAM’ = March/April/May, ‘JJA’ = June/July/August, ‘SON’ = September/October/November).  A red-coloured box in the final 
column (>20% >5 hours) indicates stations that have >20% of the daily SDsat – SDstn differences that are >5 hours.  See text for further details. 

Stn ID Lat  
(°N) 

Long 
(°E) 

H 
(m) 

DJF MAM JJA SON >20% 
>5 h r μ σ r μ σ r μ σ r μ σ 

Campbell-Stokes  

107 57.144 -4.677 21              

111 56.94 -4.238 351              

113 57.206 -3.828 228              

128 57.334 -3.6 218              

130 57.335 -3.606 220              

140 57.354 -3.345 213              

147 57.006 -3.398 339              

178 56.969 -2.207 4              

394 53.445 -0.202 108              

432 52.572 1.738 4              

461 52.227 -0.465 85              

564 53.064 -0.963 70              



 

A blended in situ-satellite SDU 
dataset Report 

Doc. No: 
Issue: 
Date:  

SAF/CM/UKMO/CDOP4/REP/SD_UC 
1.0 

22.02.2024 

 

59 

Stn ID Lat  
(°N) 

Long 
(°E) 

H 
(m) 

DJF MAM JJA SON >20% 
>5 h r μ σ r μ σ r μ σ r μ σ 

608 52.073 -1.334 87              

613 51.62 -1.099 57              

715 51.68 -0.056 32              

810 50.865 0.336 18              

1070 54.934 -2.964 28              

1216 51.88 -5.124 111              

1233 51.964 -3.629 330              

1333 50.991 -4.462 142              

1341 50.686 -4.234 131              

1347 51.2 -4.113 145              

13343 54.741 -4.958 27              

30435 58.635 -3.06 35              

Kipp & Zonen 

105 56.867 -4.708 249              
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Figure 8-2:  Time series of daily SDcs_uni (top row), SDsat (second row), SDsat – SDcs_uni (third row) and the 31-day average time series from SDcs_uni (blue) and SDsat 
(green) from station 1007. 
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Figure 8-3:  Time series of daily SDcs_uni (top), SDsat (second row), SDsat – SDcs_uni (third row) and the 31-day average time series from SDcs_uni (blue) 
and SDsat (green) from station 43. 
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Figure 8-4: Distributions of daily SDsat – SDcs_uni differences (CS-unified); stations that fail the outlier screening process, listed in Table 4-2, are 
excluded.  The top left panel shows the distribution for all machups, while the other panels show the distributions of differences partitioned by SDcs_uni 
values.  The top-right panel shows the distributions for all partitioned ranges where the central green line corresponds the 50th percentile (median) 
value, the box shows the 25th and 75th percentiles (or inter-quartile range), while the whiskers extend to the farthest data point within 1.5x the inter-
quartile range from the box. The data points that extend past the end of the whiskers are the most extreme values.
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Figure 8-5:  Generalised Linear Model coefficients used to blend SDstn and SDsat and the goodness of 
fit statistics for the three models trialled in this study (see Section 3.2).  The top row shows the a 
coefficients (panel a), second row the b coefficients (panels b & c), third row the c coefficients (panels 
d, e & f), and the fourth row the d coefficients, or y-intercept, for each model (panels g, h & i).  The fifth 
row shows the Root Mean Square Error (RMSE) for each model (panels j, k & l), while the bottom row 
shows the Psuedo-R2 (panels m, n & o; see Section 3.2).  The results for Model 1 (GLM 1; Equation 
3-3) are shown in the first column, Model 2 (GLM 2; Equation 3-4) in the second column and Model 3 
(GLM 3; Equation 3-5) in the third column.  Note the different y-axis range for each category of model 
coefficient; Figure 4-13 shows the same data where the panels showing the coefficients have the same 
y-axis range.
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Figure 8-6: Example model output for 1 June 2003 showing the a) Generalised Linear Model 2 SD (GLM 2, Equation 3-4), b) SDsat – GLM 2 SD, c) SDcs_uni – 
GLM 2 SD, d) the GP SD correction, e) the combined GLM 2 + GP corrected SD output, and f) SDcs_uni – combined GLM 2 + GP modelled SD. 
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Figure 8-7: Example model output for 1 June 2003 showing the a) Generalised Linear Model 3 SD (GLM 1, Equation 3-5), b) SDsat – GLM 3 SD, c) SDcs_uni – 
GLM 3 SD, d) the GP SD correction, e) the combined GLM 3 + GP corrected SD output, and f) SDcs_uni – combined GLM 3 + GP modelled SD. 
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