
2020/03/10 10:41 1/8 Metadata Standard

HydroMet - http://oflxs390.dwd.de/dokuwiki/

Metadata Standard

The goal of the CM SAF Metadata Standard is to make our products more uniform, which will not only
improve the user experience but also facilitate our daily work with the data. We try to keep it in sync
with the standards from C3S and obs4MIPs in order to be prepared for contributing to these projects.

The standard is mandatory for every newly generated TCDR and its associated ICDR.

A sample file can be found here.

Version

Version 2 (CDOP-3), March 2020.

File Names

All products must follow the CMSAF file naming convention.

Format

New CM SAF products shall be distributed in netCDF4 format with internal compression using zlib. The
optimum compression level depends on the data and processing constraints.

Metadata

Metadata make a dataset self-describing and drastically improve its usability. The CF Conventions are
our primary metadata standard. They are widely accepted in the climate and forecast community. In
addition to the CF conventions we agreed to also comply with the Copernicus common data model
specification and partly follow the Attribute Convention for Data Discovery as well as obs4MIPs. The
resulting metadata standard is summarized in the sections below.

Global Attributes

Attribute Content Example Comment
title Dataset Title CM SAF FCDR of SSM/I brightness temperatures

summary Dataset Summary

This dataset contains Fundamental Climate Data
Records (FCDR) of Special Sensor Microwave/Imager
(SSM/I) brightness temperatures compiled by the
Satellite Application Facility on Climate Monitoring (CM
SAF).

https://climate.copernicus.eu/
https://www.earthsystemcog.org/projects/obs4mips/
https://public.cmsaf.dwd.de/data/perm/metadata_standard/cmsaf_cdop3_tcdr_sample.nc
http://www.cmsaf.eu/EN/Products/NamingConvention/Naming_Convention_node.html
https://www.unidata.ucar.edu/software/netcdf/
http://cfconventions.org/
https://confluence.ecmwf.int/display/COPSRV/CDM%3A+Common+data+model+specification+-+v1.0
https://confluence.ecmwf.int/display/COPSRV/CDM%3A+Common+data+model+specification+-+v1.0
http://wiki.esipfed.org/index.php/Attribute_Convention_for_Data_Discovery
https://www.earthsystemcog.org/projects/obs4mips/

Last update: 2020/03/10 10:41 cmsaf:general:standards http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

http://oflxs390.dwd.de/dokuwiki/ Printed on 2020/03/10 10:41

Attribute Content Example Comment
id DOI DOI:10.5676/EUM_SAF_CM/FCDR_SSMI/V001 TCDR only

product_version Dataset version as text:
Major.Minor 1.0

creator_name Creator name DE/DWD
GCMD
Providers if
possible

creator_email contact.cmsaf@dwd.de Fixed
creator_url http://www.cmsaf.eu/ Fixed
institution EUMETSAT/CMSAF Fixed

project
Satellite Application
Facility on Climate
Monitoring (CM SAF)

Fixed

references Link to DOI resolver http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_SSMI/V001
For ICDRs
specify the
WUI landing
page

keywords_vocabulary GCMD Science Keywords,
Version 8.6

Minimum
Version

keywords
comma separated list
from GCMD Science
Keywords

EARTH SCIENCE > SPECTRAL/ENGINEERING >
MICROWAVE > BRIGHTNESS TEMPERATURE

Conventions comma separated list CF-1.7, ACDD-1.3 Minimum
Version

standard_name_vocabulary Standard Name Table
(v51, 16 May 2018)

Minimum
Version

date_created ISO 8601:2004 YYYY-MM-DDThh:mm:ss<zone>
geospatial_lat_units from udunits degrees_north

geospatial_lat_min as double -90.0 =leftmost
lat bound

geospatial_lat_max as double 90.0 =rightmost
lat bound

geospatial_lat_resolution as text 0.5 degree if applicable
geospatial_lon_units from udunits degrees_east

geospatial_lon_min as double -180.0 =leftmost
lon bound

geospatial_lon_max as double 180.0 =rightmost
lon bound

geospatial_lon_resolution as text 0.5 degree if applicable

time_coverage_start ISO 8601:2004 YYYY-MM-DDThh:mm:ss<zone> =leftmost
time bound

time_coverage_end ISO 8601:2004 YYYY-MM-DDThh:mm:ss<zone> =rightmost
time bound

time_coverage_duration ISO 8601:2004 P[YYYY]-[MM]-[DD]T[hh]:[mm]:[ss] if applicable
time_coverage_resolution ISO 8601:2004 P[YYYY]-[MM]-[DD]T[hh]:[mm]:[ss] if applicable

platform comma separated list
from GCMD Platform List

DMSP 5D-3/F16 > Defense Meteorological Satellite
Program-F16 if applicable

platform_vocabulary GCMD Platforms, Version
8.6

Minimum
version

instrument
comma separated list
from GCMD Instrument
List

SSMIS > Special Sensor Microwave Imager/Sounder if applicable

instrument_vocabulary GCMD Instruments,
Version 8.6

Minimum
version

history as text „Wed Jun 28 11:22:20 2017: ncatted -a
myattr,global,a,c,myvalue myfile.nc“ if applicable

date_modified ISO 8601:2004 YYYY-MM-DDThh:mm:ss<zone> if applicable

variable_id
Comma separated list of
primary variables in the
file

ctp,cth,ctt

mailto:mailto:contact.cmsaf@dwd.de
http://www.cmsaf.eu/
http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_SSMI/V001

2020/03/10 10:41 3/8 Metadata Standard

HydroMet - http://oflxs390.dwd.de/dokuwiki/

Attribute Content Example Comment

license

The CM SAF data are
owned by EUMETSAT and
are available to all users
free of charge and with no
conditions to use. If you
wish to use these
products, EUMETSAT's
copyright credit must be
shown by displaying the
words "Copyright (c)
([release-year])
EUMETSAT" under/in each
of these SAF Products
used in a project or shown
in a publication or
website.

Please follow the citation
guidelines given at [DOI-
landing-page] and also
register as a user at
http://cm-saf.eumetsat.int/
to receive latest
information on CM SAF
services and to get access
to the CM SAF User Help
Desk.

Replace
descriptors
in square
brackets
with
dataset
specific
information.
Use \n\n
for the
double line
break.

source Colon separated list of
Input data CM SAF FCDR of SSM/I brightness temperatures : ERA-5

Not
finalized
yet

lineage
Colon separated list of
processing steps applied
to input data (ISO Lineage
model 19115-2)

pygac-1.2.3 : PPS-2014
Not
finalized
yet

Keyword/Platform/Instrument Vocabularies can be found here.

Additional Global Attributes

Of course you can add more global attributes. We recommend adding a CMSAF_ prefix in order to
prevent name conflicts with the CF/ACDD Conventions. Here are some ideas to get started:

Attribute Content Example Comment
CMSAF_processor Overall (Re)processing framework claas-v2.5.0

CMSAF_L2_processor Software used to generate level 2
products SAFNWC-MSGv2012, CPPv5.1

CMSAF_L3_processor Software used to generate level 3
products CMSAFMSGL3_V2.1

CMSAF_orbits Number of orbits contributed by
each platform

NOAA-18=12, NOAA-19=11,
METOP-A=10

CMSAF_repeat_cycles Number of repeat cycles
contributed by each platform

METEOSAT-10=48,
METEOSAT-11=48

Consider adding temporally varying metadata not only as global attributes but
also as variables. This facilitates merging multiple timesteps into one file without
losing metadata of a particular timestep.

http://cm-saf.eumetsat.int/
http://gcmd.nasa.gov/learn/keyword_list.html

Last update: 2020/03/10 10:41 cmsaf:general:standards http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

http://oflxs390.dwd.de/dokuwiki/ Printed on 2020/03/10 10:41

Variable Attributes

Attribute Content Example Comment

long_name Variable name
written out Cloud Fraction Exception: Bounds

variables

standard_name CF Standard Name cloud_area_fraction
If any, see Standard Name
Table. You may also
propose new standard
names.

units Physical units % If applicable, udunits
compatible

cell_methods Applied statistics time: area: mean (interval:
15 minutes interval: 3 km)

Aggregated variables only
(7.3: Cell Methods)

ancillary_variables Ancillary variables nobs, quality

Use this to reference
number of observations,
quality, standard deviation
etc. (if any, 3.4. Ancillary
Data)

flag_values,
flag_masks,
flag_meanings

Flag decoding
instructions

flag_values=[0, 1, 2],
flag_meanings='good
medium bad'

Flag type variables only
(3.5. Flags)

bounds
Reference to
corresponding
bounds

lat_bnds Coordinate variables only
(7.1. Cell Boundaries)

add_offset,
scale_factor

Unpacking
parameters

If applicable (8.1. Packed
Data)

In italics: Corresponding section in the CF conventions document.

Coordinates

Each coordinate variable (time, lat, lon, …) must be characterised by cell boundaries as
described in CF Standard chapter „7.1. Cell Boundaries“. Note: If adjacent intervals are
contiguous, the shared endpoint must be represented indentically in each instance where it
occurs in the boundary variable. For example, if the intervals that contain points time(i) and
time(i+1) are contiguous, then time_bnds(i+1,0) = time_bnds(i,1).
Time coordinates must represent the left boundary of the covered temporal interval.
Geographical coordinates of regular grids must represent the centre of the gridbox. (lon,
lat) = (0, 0) must be the lower left corner of one grid cell.
In case of static irregular grids (e.g. geostationary projection) you can save data volume by
moving the twodimensional geographical coordinates to a separate auxiliary file. If doing so,
please add two dimensions identifying the position in the image (row, column). This information
is needed to identify the position in the original image after cutting a subdomain.

Precision

Always use 64 bit double for coordinates (lat/lon, time, pressure levels, …) and
round the values to the number of significant digits in order to minimize floating

http://cfconventions.org/standard-names.html
http://cfconventions.org/standard-names.html
http://www.unidata.ucar.edu/software/udunits/

2020/03/10 10:41 5/8 Metadata Standard

HydroMet - http://oflxs390.dwd.de/dokuwiki/

point errors. Choose a time origin close to your dataset (not Julian Day for
example).

See the Appendix for more details on coordinate precision.

Missing Records

If a product could not be generated for whatever reason (missing input data, processing failure, …),
an „empty“ product containing only fill values has to be generated. Composite files consisting of
multiple timestamps must always contain the same number of timestamps. If no data could be
generated for a certain timestamp, all variables must be set to fill value at that particular timestamp.

In order to quickly indicate the overall status of each record in a file, every file must provide a
record_status variable. Example:

netcdf test {
dimensions:
 time = 1234 ;
variables:
 byte record_status(time) ;
 record_status:long_name = "Record Status" ;
 record_status:comment = "Overall status of each record
(timestamp) in this file. If a record is flagged as not ok, it is
recommended not to use it." ;
 record_status:flag_values = 0B, 1B, 2B ;
 record_status:flag_meanings = "ok void bad_quality" ; }

The default for valid records is 0 (ok). If a record is missing, set the corresponding status to 1 (void).
Quality concerns should be indicated with record status 3 (bad_quality).

How To Check Your Files

We encourage you to check your files against the standard before production using both the official
CF Checker and the custom CM SAF Checker (CentOS servers only):

module load cmsaf/2019.01 python/3.7.2 cf_checker/4.0.0 cmsaf/checker/cdop3
cfchecks file1 file2 ... fileN
cmsaf_checker.py -c file1 file2 ... fileN

Appendix: Coordinate Precision

Although the definition of coordinate arrays is a straightforward task, the results may be
unexpectedly inaccurate due to floating point errors. In the following example we present four
different methods highlighting common pitfalls. In the following example we present four different

Last update: 2020/03/10 10:41 cmsaf:general:standards http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

http://oflxs390.dwd.de/dokuwiki/ Printed on 2020/03/10 10:41

methods highlighting common pitfalls.

Assume you have a global dataset on a regular 0.05×0.05 degree grid. The coordinate values
represent the center of a grid cell and the cells are arranged symmetrically around zero, i.e.
longitudes go from -179.975 to 179.975 in 0.05 degree steps:

N = int(7200)
dlon = double(0.05)
lon_min = double(-179.975)

Here are four different methods to compute the longitudes:

inc_f32: Incrementing 32bit floats

lon = allocate(size=N, type=float)
lon[0] = float(lon_min)
for idx in 1...N-1:
 lon[idx] = lon[idx-1] + float(dlon)

lin_f32: Linear „extrapolation“ using 32bit floats

lon = allocate(size=N, type=float)
for idx in 0...N-1:
 lon[idx] = float(lon_min) + idx*float(dlon)

rnd_f32: Use lin_f32 and round the result to the number of significant digits (3 in this case):

lon = allocate(size=N, type=float)
for idx in 0...N-1:
 lon[idx] = round(float(lon_min) + idx*float(dlon), digits=3,
type=float)

rnd_f64: Like rnd_f32, but using 64bit double instead of 32bit float:

lon = allocate(size=N, type=double)
for idx in 0...N-1:
 lon[idx] = round(lon_min + idx*dlon, digits=3, type=double)

Note that rounding is equivalent to computing exact coordinates in integer space and converting
them to float/double in the very end:

lon = allocate(size=N, type=double)

Determine conversion factor for lossless conversion to integer
digits = 3
factor = double(10^digits)

Compute exact coordinates in integer space
lon_i = allocate(size=N, type=long)
lon_min_i = round_int(lon_min*factor)
dlon_i = round_int(dlon*factor)

2020/03/10 10:41 7/8 Metadata Standard

HydroMet - http://oflxs390.dwd.de/dokuwiki/

for idx in 0...N-1:
 lon_i[idx] = lon_min_i + idx*dlon_i

Convert to double
for idx in 0...N-1:
 lon[idx] = double(lon_i[idx]) / factor

The function round_int rounds to the nearest integer.

How do the different methods perform in terms of accuracy? In order to determine accuracy, we need
a reference. But even the reference is not exact, because the majority of numbers is not exactly
representable by a floating point datatype. For example, the 32bit float closest to -179.975 is
-179.975006103515625 and the 32bit float closest to 0.05 is 0.0500000007450580596923828125. 64
bit floats will be closer, but not exact either. As you might expect rnd_f64 yields the most accurate
results on a 64bit machine, so we choose it as our reference.

As you can see in figure 1, method inc_f32 has the worst performance, because the representational
errors accumulate in each loop cycle. After 7200 iterations the error adds up to almost 25% of the
grid resolution! The linear extrapolation method lin_f32 performs significantly better, because every
coordinate is obtained by only one operation. Rounding the results to the number of significant digits
(rnd_f32) yields an even higher accuracy, because computational errors are eliminated and only
representational errors remain. At this point only a larger number of bits can further increase the
accuracy. Please note that the 2nd and 3rd plot appear „filled“ because the data is oscillating with a
high frequency.

Figure 1: Absolute difference from reference rnd_f64

Another measure for accuracy is the spacing between two adjacent coordinates, which is shown in
figure 2. Using coordinates of type double drastically reduces fluctuations of the grid spacing. But
keep in mind that even 64bit coordinates are not exact.

http://oflxs390.dwd.de/dokuwiki/lib/exe/detail.php?id=cmsaf%3Ageneral%3Astandards&media=cmsaf:general:standards:coords_diff.png
http://oflxs390.dwd.de/dokuwiki/lib/exe/detail.php?id=cmsaf%3Ageneral%3Astandards&media=cmsaf:general:standards:coords_spacing.png
http://oflxs390.dwd.de/dokuwiki/lib/exe/detail.php?id=cmsaf%3Ageneral%3Astandards&media=cmsaf:general:standards:coords_spacing.png
http://oflxs390.dwd.de/dokuwiki/lib/exe/detail.php?id=cmsaf%3Ageneral%3Astandards&media=cmsaf:general:standards:coords_spacing.png

Last update: 2020/03/10 10:41 cmsaf:general:standards http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

http://oflxs390.dwd.de/dokuwiki/ Printed on 2020/03/10 10:41

Figure 2: Spacing between adjacent coordinates. Hatched areas indicate the fluctuation range of the
quantity.

The above results also show that the density of floating point numbers is largest near zero (→ smaller
representational errors) and decreases exponentially towards larger values (→ larger errors). See
What Every Computer Scientist Should Know About Floating-Point Arithmetic for more details than you
can handle.

Conclusion

Always use 64 bit double for coordinates (lat/lon, time, pressure levels, …) and round the values
to the number of significant digits if possible.
Double check your standard numeric library! For example numpy.arange(start, stop,
step, type='float32') in Python is even worse than inc_f32!

From:
http://oflxs390.dwd.de/dokuwiki/ - HydroMet

Permanent link:
http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

Last update: 2020/03/10 10:41

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://oflxs390.dwd.de/dokuwiki/
http://oflxs390.dwd.de/dokuwiki/doku.php?id=cmsaf:general:standards

	Metadata Standard
	Version
	File Names
	Format
	Metadata
	Global Attributes
	Additional Global Attributes

	Variable Attributes

	Coordinates
	Precision

	Missing Records
	How To Check Your Files
	Appendix: Coordinate Precision
	Conclusion

